Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices. Science 1995, 270, 5240, 10.1126/science.270.5240.1335
Tour, J. M. Molecular Electronics. Synthesis and Testing of Components. Acc. Chem. Res. 2000, 33, 791-804, 10.1021/ar0000612
Nitzan, A.; Ratner, M. A. Electron Transport in Molecular Wire Junctions. Science 2003, 300, 1384-1389, 10.1126/science.1081572
National Academy of Engineering. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2003 NAE Symposium on Frontiers of Engineering; National Academies Press, 2004.
Cohen, E.; Gdor, I.; Romero, E.; Yochelis, S.; van Grondelle, R.; Paltiel, Y. Achieving Exciton Delocalization in Quantum Dot Aggregates Using Organic Linker Molecules. J. Phys. Chem. Lett. 2017, 8, 1014-1018, 10.1021/acs.jpclett.6b02980
Colvin, V. L.; Goldstein, A. N.; Allivisatos, A. P.; Alivisatos, A. P. Semiconductor Nanocrystals Covalently Bound to Metal Surfaces with Self-Assembled Monolayers. J. Am. Chem. Soc. 1992, 114, 5221-5230, 10.1021/ja00039a038
Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature 1994, 370, 354-357, 10.1038/370354a0
Sun, L.; Choi, J. J.; Stachnik, D.; Bartnik, A. C.; Hyun, B.-R.; Malliaras, G. G.; Hanrath, T.; Wise, F. W. Bright Infrared Quantum-Dot Light-Emitting Diodes through Inter-Dot Spacing Control. Nat. Nanotechnol. 2012, 7, 369, 10.1038/nnano.2012.63
Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D. Colloidal-Quantum-Dot Photovoltaics Using Atomic-Ligand Passivation. Nat. Mater. 2011, 10, 765, 10.1038/nmat3118
Hanrath, T. Colloidal Nanocrystal Quantum Dot Assemblies as Artificial Solids. J. Vac. Sci. Technol., A 2012, 30, 030802, 10.1116/1.4705402
Choi, J.-H.; Fafarman, A. T.; Oh, S. J.; Ko, D.-K.; Kim, D. K.; Diroll, B. T.; Muramoto, S.; Gillen, J. G.; Murray, C. B.; Kagan, C. R. Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics. Nano Lett. 2012, 12, 2631-2638, 10.1021/nl301104z
Talgorn, E.; Gao, Y.; Aerts, M.; Kunneman, L. T.; Schins, J. M.; Savenije, T. J.; van Huis, M. A.; van der Zant, H. S. J.; Houtepen, A. J.; Siebbeles, L. D. A. Unity Quantum Yield of Photogenerated Charges and Band-like Transport in Quantum-Dot Solids. Nat. Nanotechnol. 2011, 6, 733-739, 10.1038/nnano.2011.159
Li, X.; Wu, Y.; Steel, D.; Gammon, D.; Stievater, T. H.; Katzer, D. S.; Park, D.; Piermarocchi, C.; Sham, L. J. An All-Optical Quantum Gate in a Semiconductor Quantum Dot. Science 2003, 301, 809-811, 10.1126/science.1083800
Remacle, F.; Heath, J. R.; Levine, R. D. Electrical Addressing of Confined Quantum Systems for Quasiclassical Computation and Finite State Logic Machines. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 5653-5658, 10.1073/pnas.0501623102
Fresch, B.; Hiluf, D.; Collini, E.; Levine, R. D.; Remacle, F. Molecular Decision Trees Realized by Ultrafast Electronic Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 17183-17188, 10.1073/pnas.1314978110
Crooker, S. A.; Hollingsworth, J. A.; Tretiak, S.; Klimov, V. I. Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials. Phys. Rev. Lett. 2002, 89, 186802, 10.1103/physrevlett.89.186802
Achermann, M.; Petruska, M. A.; Crooker, S. A.; Klimov, V. I. Picosecond Energy Transfer in Quantum Dot Langmuir-Blodgett Nanoassemblies. J. Phys. Chem. B 2003, 107, 13782-13787, 10.1021/jp036497r
Zheng, K.; Žídek, K.; Abdellah, M.; Zhu, N.; Chábera, P.; Lenngren, N.; Chi, Q.; Pullerits, T. Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation. J. Am. Chem. Soc. 2014, 136, 6259-6268, 10.1021/ja411127w
Akselrod, G. M.; Prins, F.; Poulikakos, L. V.; Lee, E. M. Y.; Weidman, M. C.; Mork, A. J.; Willard, A. P.; Bulović, V.; Tisdale, W. A. Subdiffusive Exciton Transport in Quantum Dot Solids. Nano Lett. 2014, 14, 3556-3562, 10.1021/nl501190s
Franzl, T.; Shavel, A.; Rogach, A. L.; Gaponik, N.; Klar, T. A.; Eychmüller, A.; Feldmann, J. High-Rate Unidirectional Energy Transfer in Directly Assembled CdTe Nanocrystal Bilayers. Small 2005, 1, 392-395, 10.1002/smll.200400074
Kim, D.; Okahara, S.; Nakayama, M.; Shim, Y. Experimental Verification of Förster Energy Transfer between Semiconductor Quantum Dots. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 153301, 10.1103/PhysRevB.78.153301
Kholmicheva, N.; Moroz, P.; Bastola, E.; Razgoniaeva, N.; Bocanegra, J.; Shaughnessy, M.; Porach, Z.; Khon, D.; Zamkov, M. Mapping the Exciton Diffusion in Semiconductor Nanocrystal Solids. ACS Nano 2015, 9, 2926-2937, 10.1021/nn507322y
Xu, F.; Ma, X.; Haughn, C. R.; Benavides, J.; Doty, M. F.; Cloutier, S. G. Efficient Exciton Funneling in Cascaded PbS Quantum Dot Superstructures. ACS Nano 2011, 5, 9950-9957, 10.1021/nn203728t
Zhang, J.; Tolentino, J.; Smith, E. R.; Zhang, J.; Beard, M. C.; Nozik, A. J.; Law, M.; Johnson, J. C. Carrier Transport in PbS and PbSe QD Films Measured by Photoluminescence Quenching. J. Phys. Chem. C 2014, 118, 16228-16235, 10.1021/jp504240u
Allan, G.; Delerue, C. Energy Transfer between Semiconductor Nanocrystals: Validity of Förster's Theory. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 195311, 10.1103/physrevb.75.195311
Baer, R.; Rabani, E. Theory of Resonance Energy Transfer Involving Nanocrystals: The Role of High Multipoles. J. Chem. Phys. 2008, 128, 184710, 10.1063/1.2913247
Mork, A. J.; Weidman, M. C.; Prins, F.; Tisdale, W. A. Magnitude of the Förster Radius in Colloidal Quantum Dot Solids. J. Phys. Chem. C 2014, 118, 13920-13928, 10.1021/jp502123n
Grumbach, N.; Capek, R. K.; Tilchin, E.; Rubin-Brusilovski, A.; Yang, J.; Ein-Eli, Y.; Lifshitz, E. Comprehensive Route to the Formation of Alloy Interface in Core/Shell Colloidal Quantum Dots. J. Phys. Chem. C 2015, 119, 12749-12756, 10.1021/acs.jpcc.5b03086
Cohen, E.; Gruber, M.; Romero, E.; Yochelis, S.; van Grondelle, R.; Paltiel, Y. Properties of Self-Assembled Hybrid Organic Molecule/Quantum Dot Multilayered Structures. J. Phys. Chem. C 2014, 118, 25725-25730, 10.1021/jp507825r
Dance, I. G.; Choy, A.; Scudder, M. L. Syntheses, Properties, and Molecular and Crystal Structures of (Me4N)4[E4M10(SPh)16] (E = Sulfur or Selenium; M = Zinc or Cadmium): Molecular Supertetrahedral Fragments of the Cubic Metal Chalcogenide Lattice. J. Am. Chem. Soc. 1984, 106, 6285-6295, 10.1021/ja00333a030
Qu, L.; Peng, Z. A.; Peng, X. Alternative Routes toward High Quality CdSe Nanocrystals. Nano Lett. 2001, 1, 333-337, 10.1021/nl0155532
Klar, T. A.; Franzl, T.; Rogach, A. L.; Feldmann, J. Super-Efficient Exciton Funneling in Layer-by-Layer Semiconductor Nanocrystal Structures. Adv. Mater. 2005, 17, 769-773, 10.1002/adma.200401675
Klimov, V. I. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals. J. Phys. Chem. B 2000, 104, 6112-6123, 10.1021/jp9944132
Kambhampati, P. Hot Exciton Relaxation Dynamics in Semiconductor Quantum Dots: Radiationless Transitions on the Nanoscale. J. Phys. Chem. C 2011, 115, 22089-22109, 10.1021/jp2058673
Klimov, V.; Hunsche, S.; Kurz, H. Biexciton Effects in Femtosecond Nonlinear Transmission of Semiconductor Quantum Dots. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 8110-8113, 10.1103/physrevb.50.8110
Zhang, X.; Izutsu, M. Ultrafast Processes of Highly Excited Carriers in CdS X Se 1-X -Doped Glass. Jpn. J. Appl. Phys. 1998, 37, 6025-6028, 10.1143/jjap.37.6025
Garrett, M. D.; Dukes, A. D., III; McBride, J. R.; Smith, N. J.; Pennycook, S. J.; Rosenthal, S. J. Band Edge Recombination in CdSe, CdS and CdS X Se 1-X Alloy Nanocrystals Observed by Ultrafast Fluorescence Upconversion: The Effect of Surface Trap States. J. Phys. Chem. C 2008, 112, 12736-12746, 10.1021/jp803708r
Nanocrystal Quantum Dots, 2 nd ed.; Klimov, V. I., Ed.; CRC Press, 2010.
Liu, I.-S.; Lo, H.-H.; Chien, C.-T.; Lin, Y.-Y.; Chen, C.-W.; Chen, Y.-F.; Su, W.-F.; Liou, S.-C. Enhancing Photoluminescence Quenching and Photoelectric Properties of CdSe Quantum Dots with Hole Accepting Ligands. J. Mater. Chem. 2008, 18, 675, 10.1039/b715253a
Forster, T. Intermolecular Energy Migration and Fluorecence. Ann. Phys. 1948, 2, 55, 10.1002/andp.19484370105
Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer, 2006.
Rogach, A. L.; Klar, T. A.; Lupton, J. M.; Meijerink, A.; Feldmann, J. Energy Transfer with Semiconductor Nanocrystals. J. Mater. Chem. 2009, 19, 1208, 10.1039/b812884g
Kundu, S.; Patra, A. Nanoscale Strategies for Light Harvesting. Chem. Rev. 2017, 117, 712-757, 10.1021/acs.chemrev.6b00036
Wang, H.; McNellis, E. R.; Kinge, S.; Bonn, M.; Cánovas, E. Tuning Electron Transfer Rates through Molecular Bridges in Quantum Dot Sensitized Oxides. Nano Lett. 2013, 13, 5311-5315, 10.1021/nl402820v
Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Reproducible Measurement of Single-Molecule Conductivity. Science 2001, 294, 5542, 10.1126/science.1064354
Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V. B.; Frisbie, C. D. Comparison of Electronic Transport Measurements on Organic Molecules. Adv. Mater. 2003, 15, 1881-1890, 10.1002/adma.200306091