collective behavior; collective decision-making; group cohesion; fission-fusion societies; radial maze; radial arm maze; golden shiner; collective behaviour; social behaviour; schools; shoals; majority transition; Notemigonus crysoleucas; cohesion index; automated image processing; automated counting system; package R projectRadial; projectradial; blob analysis; occlusion image; videotracking; stereotypic behaviour; exploratory behaviour; partition law; partition number; fish behaviour; social fish
Abstract :
[en] Collective behaviors are observed throughout nature, from bacterial colonies to human societies. Important theoretical breakthroughs have recently been made in understanding why animals produce group behaviors and how they coordinate their activities, build collective structures, and make decisions. However, standardized experimental methods to test these findings are lacking. Notably, easily and unambiguously determining the membership of a group and the responses of an individual within that group is still a challenge.
The radial arm maze is presented here as a new standardized method to investigate collective exploration and decision-making in animal groups. This paradigm gives individuals within animal groups the opportunity to make choices among a set of discrete alternatives, and these choices can be easily tracked over long periods of time.
We demonstrate the usefulness of this paradigm by performing a set of refuge-site selection experiments with groups of fish. Using an open-source, robust custom image processing algorithm, we automatically count the number of animals in each arm of the maze to identify the majority choice. We also propose a new index to quantify the degree of group cohesion in this context.
The radial arm maze paradigm provides an easy way to categorize and quantify the choices made by the animals. It makes it possible to readily apply the traditional uses of the radial arm maze with single animals to the study of animal groups. Moreover, it opens up the possibility of studying questions specifically related to collective behaviors.
Disciplines :
Zoology
Author, co-author :
Delcourt, Johann ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Miller, Noam; Wilfrid Laurier University, Waterloo, Ontario, Canada > Department of Psychology
Couzin, Iain; University of Konstanz, Konstanz, Germany > Department of Collective Behaviour, Max Planck Institute for Ornithology and Department of Biology
Garnier, Simon; New Jersey Institute of Technology, USA > Department of Biological Sciences
Language :
English
Title :
Methods for the effective study of collective behavior in a radial arm maze
Publication date :
2018
Journal title :
Behavior Research Methods
ISSN :
1554-351X
eISSN :
1554-3528
Publisher :
Springer
Volume :
50
Pages :
1673-1685
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
online access of this article: https://link.springer.com/article/10.3758/s13428-018-1024-9
Al-Imari, L., & Gerlai, R. (2008). Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behavioural Brain Research, 189, 216–219
Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J., & Couzin, I. D. (2013). Emergent sensing of complex environments by mobile animal groups, Science, 339, 574–576
Bode, N. W. F., & Delcourt, J. (2013). Individual-to-resource landscape interaction strength can explain different collective feeding behaviours. PLoS ONE, 8, e75879. doi:10.1371/journal.pone.0075879
Branson, K., Robie, A. A., Bender, J., Perona, P., & Dickinson, M. H. (2009). High-throughput ethomics in large groups of Drosophila. Nature Methods, 6, 451– 457. doi:10.1038/nmeth.1328
Brown, M. F., & Giumetti, G. W. (2006). Spatial pattern learning in the radial arm maze. Learning & Behavior, 34, 102–108
Brown, M. F., Prince, T.-M. N., & Doyle, K. E. (2009). Social effects on spatial choice in the radial arm maze. Learning & Behavior, 37, 269–280. doi:10.3758/LB.37.3.269
Cole, M. R., & Chappell-Stephenson, R. (2003). Exploring the limits of spatial memory in rats, using very large mazes. Learning & Behavior, 31, 349–368
Colwill, R. M., Raymond, M. P., Ferreira, L., & Escudero, H. (2005). Visual discrimination learning in zebrafish (Danio rerio). Behavioural Processes, 70, 19–31
Correll, N., Sempo, G., Lopez de Meneses, Y., Halloy, J., Deneubourg J.-L., & Martiloni, A. (2006, October). SwisTrack: A tracking tool for multi-unit robotic and biological systems. Paper presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China
Couzin, I. D., Ioannou, C. C., Demirel, G., Gross, T., Torney, C. J., Hartnett, A.,.. Leonard, N. E. (2011). Uninformed individuals promote democratic consensus in animal groups. Science, 334, 1578–1580
Couzin, I. D., Krause, J., Franks N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433, 513–516
Creson, T. K., Woodruff, M. L., Ferslew, K. E., Rasch, E. M., & Monaco, P. J. (2003). Dose-response effects of chronic lithium regimens on spatial memory in the black molly fish. Pharmacology, Biochemistry, and Behavior, 75, 35–47
Crusio, W. E., & Schwegler, H. (2005). Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behavioral and Brain Functions, 1(3), 1–11. doi:10.1186/1744-9081-1-3
Delcourt, J., Bode, N. W. F., & Denoël, M. (2016). Collective vortex behaviors: Diversity, proximate, and ultimate causes of circular animal group movements. Quarterly Review of Biology, 91, 1–24
Delcourt, J., Denoël, M., Ylieff, M., & Poncin, P. (2013). Video multitracking of fish behaviour: A synthesis and future perspectives. Fish and Fisheries, 14, 186–204
Delcourt, J., & Poncin, P. (2012). Shoals and schools: back to the heuristic definitions and quantitative references. Reviews in Fish Biology and Fisheries, 22, 595–619
Delcourt, J., Ylieff, M., Bolliet, V., Poncin, P., & Bardonnet, A. (2011). Video tracking in the extreme: A new possibility for tracking nocturnal underwater transparent animals with fluorescent elastomer tags. Behavior Research Methods, 43, 590–600
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48, 1–18
Hankin, R. K. S. (2006). Additive integer partitions in R. Journal of Statistical Software, 16, Code Snippet 1
Hankin, R. K. S. (2007). Set partitions in R. Journal of Statistical Software, 23, Code Snippet 2
Hodges, H. (1996). Maze procedures: The radial-arm and water maze compared. Cognitive Brain Research, 3, 167–181
Hughes, R. N., & Blight, C. M. (1999). Algorithmic behaviour and spatial memory are used by two intertidal fish species to solve the radial maze. Animal Behaviour, 58, 601–613
Hughes, R. N., & Blight, C. M. (2000). Two intertidal fish species use visual association learning to track the status of food patches in a radial maze. Animal Behaviour, 59, 613–621
Katz, Y., Ioannou, C. C., Tunstrøm, K., Huepe, C., & Couzin, I. D. (2011). Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences, 108, 18720–18725
Leblond, C., & Reebs, S. G. (2006). Individual leadership and boldness in shoals of golden shiners (Notemigonus crysoleucas). Behaviour, 143, 1263–1280
Leonard, N. E., Shen, T., Nabet, B., Scardovi, L., Couzin, I. D., & Levin SA. (2012). Decision versus compromise for animal groups in motion. Proceedings of the National Academy of Sciences, 109, 227–232
Lipp, H. P., Pleskacheva, M. G., Gossweiler, H., Ricceri, L., Smirnova, A. A., Garin, N. N.,.. Dell’Omo G. (2001). A large outdoor radial maze for comparative studies in birds and mammals. Neuroscience & Biobehavioral Reviews, 25, 83–99
Lopez, J. C., Bingman, V. P., Rodriguez, F., Gomez, Y., & Salas, C. (2000). Dissociation of place and cue learning by telencephalic ablation in the goldfish. Behavioral Neuroscience, 114, 687–699
Lopez, U., Gautrais, J., Couzin, I. D., & Theraulaz, G. (2012). From behavioral analyses to models of collective motion in fish schools. Interface Focus, 2, 693–707
Macpherson, K., & Roberts, W. A. (2010). Spatial memory in dogs (Canis familiaris) on a radial maze. Journal of Comparative Psychology, 124, 47–56
Miller, N., Garnier, S., Hartnett, A. T., & Couzin, I. D. (2013). Both information and social cohesion determine collective decisions in animal groups. Proceedings of the National Academy of Sciences, 110, 5263–5268
Miller, N., & Gerlai, R. (2011). Redefining membership in animal groups. Behavior Research Methods, 43, 964–970. doi:10.3758/s13428-011-0090-z
Miller, N. Y., & Gerlai, R. (2008). Oscillations in shoal cohesion in zebrafish (Danio rerio). Behavioural Brain Research, 193, 148–151
Mogdans, J., & Bleckmann, H. (2012). Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system. Biological Cybernetics, 106,627–642
Mueller-Paul, J., Wilkinson, A., Hall, G., & Huber, L. (2012). Radial-arm-maze behavior of the red-footed tortoise (Geochelone carbonaria). Journal of Comparative Psychology, 126, 305–317
Olton, D. S., Collison, C., & Werz, M. A. (1977). Spatial memory and radial arm maze performance of rats. Learning and Motivation, 8, 289–314
Olton, D. S., & Samuelson, R. J. (1976). Remembrance of places past: Spatial memory in rats. Journal of Experimental Psychology: Animal Behavior Processes, 2, 97–116
Partridge, B. L. (1982). The Structure and Function of Fish Schools. Scientific American, 246, 114–123
Partridge, B. L., & Pitcher, T. J. (1980). The sensory basis of fish schools: Relative roles of lateral line and vision. Journal of comparative physiology, 135, 315–325. 10.1007/BF00657647
Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S., & de Polavieja, G. G. (2014). IdTracker: Tracking individuals in a group by automatic identification of unmarked animals. Nature Methods 11, 743–748
Pitcher, T. J. (1983). Heuristic definitions of fish shoaling behavior. Animal Behaviour, 31, 611–613
Pleskacheva, M. G. (2009). Behavior and spatial learning in radial mazes in birds. Neuroscience and Behavioral Physiology, 39, 725–739
Qian, Z.-M., Cheng, X. E., & Chen, Y. Q. (2014). Automatically detect and track multiple fish swimming in shallow water with frequent occlusion. PLoS ONE, 9, e106506. doi:10.1371/journal.pone.0106506
Quera, V., Beltran, F. S., & Dolado, R. (2011). Determining shoal membership: A comparison between momentary and trajectory-based methods. Behavioural Brain Research, 225, 363–366
Quera, V., Beltran, F. S., Givoni, I. E., & Dolado, R. (2013). Determining shoal membership using affinity propagation. Behavioural Brain Research, 241, 38–49
Reebs, S. G. (2000). Can a minority of informed leaders determine the foraging movements of a fish shoal? Animal Behaviour, 59, 403–409
Reebs, S. G. (2001). Influence of body size on leadership in shoals of golden shiners, Notemigonus crysoleucas. Behaviour, 138, 797–809
Roitblat, H., Tham, W., & Golub, L. (1982). Performance of Betta splendens in a radial arm maze. Animal Learning & Behavior, 10, 108–114
Sison, M., & Gerlai, R. (2010). Associative learning in zebrafish (Danio rerio) in the plus maze. Behavioural Brain Research, 207, 99–104
Sorensen, P. W., & Wisenden, B. D. (2014). Fish Pheromones and Related Cues. Wiley & Sons, Inc. 296 p. 10.1002/9781118794739
Sumpter, D. J. T. (2010). Collective animal behavior. Princeton University Press. 302 p. 10.1515/9781400837106
Tolman, E. C., Ritchie, B. F., & Kalish, D. (1946). Studies in spatial learning: I. Orientation and the short-cut. Journal of Experimental Psychology, 36, 13–24. doi:10.1037/h0053944
Tunstrøm, K., Katz, Y., Ioannou, C. C., Huepe, C., Lutz, M. J., & Couzin, I. D. (2013). Collective states, multistability and transitional behavior in schooling fish. PLoS Computational Biology, 9, e1002915. 10.1371/journal.pcbi.1002915
Turchin, P. (1998). Quantitative analysis of movement: Measuring and modeling population redistribution of plants and animals. Sunderland, MA: Sinauer Associates
Vorhees, C. V., & Williams, M. T. (2014). Assessing spatial learning and memory in rodents. Institute for Laboratory Animal Research Journal, 55, 310–332
Walsh, T. J., & Chrobak, J. J. (1987). The use of the radial arm maze in neurotoxicology. Physiology and Behavior, 40, 799–803
Wang, S. H., Cheng, X. E., Qian, Z.-M., Liu, Y., & Chen, Y. Q. (2016). Automated planar tracking the waving bodies of multiple zebrafish swimming in shallow water. PLoS ONE, 11, e0154714. 10.1371/journal.pone.0154714
Ward, A. J., Sumpter, D. J. T., Couzin, I. D., Hart, P. J. B., & Krause, J. (2008). Quorum decision-making facilitates information transfer in fish shoals. Proceedings of the National Academy of Sciences, 105, 6948–6953
Washizuka, K., & Taniuchi, T. (2006). Acquisition of a radial maze task by goldfish. Japanese Journal of Animal Psychology, 56, 27–33
Washizuka, K., & Taniuchi, T. (2007). Proactive interference on the radial arm maze performance of zebrafish. Japanese Journal of Animal Psychology, 57, 73–79
Wilkie, D. M., & Slobin, P. (1983). Gerbils in space: Performance on the 17-arm radial maze. Journal of the Experimental Analysis of Behavior, 40, 301–312
Wilkinson, A., Coward, S., & Hall, G. (2009). Visual and response-based navigation in the tortoise (Geochelone carbonaria). Animal Cognition, 12, 779–787
Yang, Y., Chen, J., Engel, J., Pandya, S., Chen, N., Tucker, C., Coombs, S., Jones, D. L., & Liu, C. (2006). Distant touch hydrodynamic imaging with an artificial lateral line. Proceedings of the National Academy of Sciences, 103,18891–18895