Lejaeghere, K., Bihlmayer, G., Björkman, T., Blaha, P., Blügel, S., Blum, V., Caliste, D., Cottenier, S., Reproducibility in density functional theory calculations of solids (2016) Science, 351 (6280), p. 1415
Hamann, D., Schlüter, M., Chiang, C., Norm-conserving pseudopotentials (1979) Phys. Rev. Lett., 43 (20), pp. 1494-1497
Bachelet, G., Hamann, D., Schlüter, M., Pseudopotentials that work: From H to Pu (1982) Phys. Rev. B, 26 (8), pp. 4199-4228
Hohenberg, P., Kohn, W., Inhomogeneous electron gas (1964) Phys. Rev., 136, pp. B864-B871
Kohn, W., Sham, L.J., Self-consistent equations including exchange and correlation effects (1965) Phys. Rev., 140, pp. A1133-A1138
Poncé, S., Antonius, G., Boulanger, P., Cannuccia, E., Marini, A., Côté, M., Gonze, X., Verification of first-principles codes: Comparison of total energies, phonon frequencies, electron–phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo (2014) Comput. Mater. Sci., 83, p. 341
Rappe, A., Rabe, K., Kaxiras, E., Joannopoulos, J., Optimized pseudopotentials (1990) Phys. Rev. B, 41 (2), pp. 1227-1230
Hartwigsen, C., Goedecker, S., Hutter, J., Relativistic separable dual-space Gaussian pseudopotentials from H to Rn (1998) Phys. Rev. B, 58, pp. 3641-3662
Krack, M., Pseudopotentials for H to Kr optimized for gradient-corrected exchange–correlation functionals (2005) Theo. Chem. Acc., 114 (1), pp. 145-152
http://opium.sourceforge.net, (accessed 14 July 2017)
http://www.quantum-espresso.org/pseudopotentials, (accessed 14 July 2017)
Schlipf, M., Gygi, F., Optimization algorithm for the generation of ONCV pseudopotentials (2015) Comput. Phys. Comm., 196, pp. 36-44
Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism (1990) Phys. Rev. B, 41 (11), pp. 7892-7895
Hamann, D.R., Erratum: optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013) (2017) Phys. Rev. B, 95, p. 239906
Marques, M.A., Oliveira, M.J., Burnus, T., Libxc: A library of exchange and correlation functionals for density functional theory (2012) Comput. Phys. Comm., 183 (10), pp. 2272-2281
van Setten, M.J., Giantomassi, M., Gonze, X., Rignanese, G.-M., Hautier, G., Automation methodologies and large-scale validation for GW: Towards high-throughput GW calculations (2017) Phys. Rev. B, 96, p. 155207
García, A., Verstraete, M., Pouillon, Y., Junquera, J.,
http://jupyter.org, (accessed 18 October 2017)
Garrity, K.F., Bennett, J.W., Rabe, K.M., Vanderbilt, D., Pseudopotentials for high-throughput DFT calculations (2014) Comput. Mater. Sci., 81, pp. 446-452
Lejaeghere, K., Speybroeck, V.V., Oost, G.V., Cottenier, S., error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals (2013) Crit. Rev. Solid State Mater. Sci., 39 (1), pp. 1-24
Hamann, D., Generalized norm-conserving pseudopotentials (1989) Phys. Rev. B, 40 (5), pp. 2980-2987
Koelling, D.D., Harmon, B.N., (1977) J. Phys. C Solid State Phys., 10, p. 3107
Gonze, X., Amadon, B., Anglade, P.-M., Beuken, J.-M., Bottin, F., Boulanger, P., Bruneval, F., Zwanziger, J., Abinit: First-principles approach to material and nanosystem properties (2009) Comput. Phys. Comm., 180 (12), pp. 2582-2615
Gonze, X., Jollet, F., Abreu Araujo, F., Adams, D., Amadon, B., Applencourt, T., Audouze, C., Zwanziger, J.W., Recent developments in the ABINIT software package (2016) Comput. Phys. Comm., 205, pp. 106-131
(2017), http://www.pseudo-dojo.org
Troullier, N., Martins, J.L., Efficient pseudopotentials for plane-wave calculations (1991) Phys. Rev. B, 43 (3), pp. 1993-2006
Perdew, J.P., Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy (1992) Phys. Rev. B, 45, pp. 13244-13249
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces (2008) Phys. Rev. Lett., 100, p. 136406
Marques, M.A., Oliveira, M.J., Burnus, T., Libxc: A library of exchange and correlation functionals for density functional theory (2012) Comput. Phys. Comm., 183 (10), pp. 2272-2281
Scherpelz, P., Govoni, M., Hamada, I., Galli, G., Implementation and validation of fully relativistic GW calculations: spin-orbit coupling in molecules, nanocrystals, and solids (2016) J. Chem. Theory Comput., 12 (8), pp. 3523-3544
Tiago, M.L., Ismail-Beigi, S., Louie, S.G., Effect of semicore orbitals on the electronic band gaps of Si, Ge, and GaAs within the GW approximation (2004) Phys. Rev. B, 69, p. 125212
Louie, S.G., Froyen, S., Cohen, M.L., Nonlinear ionic pseudopotentials in spin-density-functional calculations (1982) Phys. Rev. B, 26, pp. 1738-1742
Teter, M., Additional condition for transferability in pseudopotentials (1993) Phys. Rev. B, 48, pp. 5031-5041
Jollet, F., Torrent, M., Holzwarth, N., Generation of projector augmented-wave atomic data: A 71 element validated table in the XML format (2014) Comput. Phys. Comm., 185 (4), pp. 1246-1254
Gonze, X., Käckell, P., Scheffler, M., Ghost states for separable, norm-conserving, ab initio pseudopotentials (1990) Phys. Rev. B, 41, pp. 12264-12267
Gonze, X., Stumpf, R., Scheffler, M., Analysis of separable potentials (1991) Phys. Rev. B, 44, pp. 8503-8513
Goedecker, S., Private Communication
Scherpelz, P., Govoni, M., Hamada, I., Galli, G., Implemention and validation of fully relativistic GW calculations (2016) J. Chem. Theory Comput., 12, p. 3523