[en] There is a common understanding in quantum optics that nonclassical states of light are states that do not have a positive semidefinite and sufficiently regular Glauber-Sudarshan function. Almost all known nonclassical states have functions that are highly irregular, which makes working with them difficult and direct experimental reconstruction impossible. Here we introduce classes of nonclassical states with regular, non-positive-definite functions. They are constructed by “puncturing” regular smooth positive functions with negative Dirac-δ peaks or other sufficiently narrow smooth negative functions. We determine the parameter ranges for which such punctures are possible without losing the positivity of the state, the regimes yielding antibunching of light, and the expressions of the Wigner functions for all investigated punctured states. Finally, we propose some possible experimental realizations of such states.
Disciplines :
Physics
Author, co-author :
Damanet, François ; Université de Liège - ULiège > Département de physique > Optique quantique
Kübler, Jonas; Institut für theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
Martin, John ; Université de Liège - ULiège > Département de physique > Optique quantique
Braun, Daniel; Institut für theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
Language :
English
Title :
Nonclassical states of light with a smooth P function
Publication date :
February 2018
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society, United States - Maryland
Volume :
97
Pages :
023832
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
D. V. Strekalov and G. Leuchs, Nonlinear interactions and non-classical light, in Advances in Quantum Photonics: from the First Single-photon and Nonlinear Optical Experiments to Modern Quantum Photonics, edited by Robert W. Boyd, Svetlana G. Lukishova, and Victor N. Zadkov (Springer, New York, in press), arXiv:1701.01403.
A. Pathak and A. Ghatak, Classical light vs. nonclassical light: characterizations and interesting applications, J. Electromagnet. Waves Appl. 32, 229 (2018). 0920-5071 10.1080/09205071.2017.1398109
M. Xiao, L.-A. Wu, and H. J. Kimble, Precision Measurement Beyond the Shot-Noise Limit, Phys. Rev. Lett. 59, 278 (1987). PRLTAO 0031-9007 10.1103/PhysRevLett.59.278
L. K. Shalm, R. B. A. Adamson, and A. M. Steinberg, Squeezing and over-squeezing of triphotons, Nature (London) 457, 67 (2009). NATUAS 0028-0836 10.1038/nature07624
T. Ono, J. Sabines-Chesterking, H. Cable, J. L. O'Brien, and J. C. F. Matthews, Optical implementation of spin squeezing, New J. Phys. 19, 053005 (2017). NJOPFM 1367-2630 10.1088/1367-2630/aa6e39
A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, Quantum Interferometric Optical Lithography-Exploiting Entanglement to Beat the Diffraction Limit, Phys. Rev. Lett. 85, 2733 (2000). PRLTAO 0031-9007 10.1103/PhysRevLett.85.2733
D. V. Strekalov and J. P. Dowling, Two-photon interferometry for high-resolution imaging, J. Mod. Opt. 49, 519 (2002). JMOPEW 0950-0340 10.1080/09500340110090846
M. Genovese, Real applications of quantum imaging, J. Opt. 18, 073002 (2016). 2040-8978 10.1088/2040-8978/18/7/073002
M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, Subdiffraction-Limited Quantum Imaging Within a Living Cell, Phys. Rev. X 4, 011017 (2014). 2160-3308 10.1103/PhysRevX.4.011017
B. Ya. Zel'dovich and D. N. Klyshko, Statistics of field in parametric luminescence, Pis'ma Zh. Eksp. Teor. Fiz. 9, 69 (1969)
B. Ya. Zel'dovich and D. N. Klyshko, [JETP Lett. 9, 40 (1969)].
D. C. Burnham and D. L. Weinberg, Observation of Simultaneity in Parametric Production of Optical Photon Pairs, Phys. Rev. Lett. 25, 84 (1970). PRLTAO 0031-9007 10.1103/PhysRevLett.25.84
D. N. Klyshko, Use of two-photon light for absolute calibration of photoelectric detectors, Sov. J. Quantum Electron. 10, 1112 (1980). 0049-1748 10.1070/QE1980v010n09ABEH010660
G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on Practical Quantum Cryptography, Phys. Rev. Lett. 85, 1330 (2000). PRLTAO 0031-9007 10.1103/PhysRevLett.85.1330
H. Zheng, D. J. Gauthier, and H. U. Baranger, Decoy-state quantum key distribution with nonclassical light generated in a one-dimensional waveguide, Opt. Lett. 38, 622 (2013). OPLEDP 0146-9592 10.1364/OL.38.000622
S. D. Bartlett and B. C. Sanders, Requirement for quantum computation, J. Mod. Opt. 50, 2331 (2003). JMOPEW 0950-0340 10.1080/09500340308233564
R. Chiao and J. Garrison, Quantum Optics (Oxford University Press, Oxford, 2008).
E. C. G. Sudarshan, Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams, Phys. Rev. Lett. 10, 277 (1963). PRLTAO 0031-9007 10.1103/PhysRevLett.10.277
G. S. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, UK, 2012).
T. Kiesel and W. Vogel, Nonclassicality filters and quasi-probabilities, Phys. Rev. A 82, 032107 (2010). PLRAAN 1050-2947 10.1103/PhysRevA.82.032107
T. Kiesel, W. Vogel, B. Hage, and R. Schnabel, Direct Sampling of Negative Quasiprobabilities of a Squeezed State, Phys. Rev. Lett. 107, 113604 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.113604
E. Agudelo, J. Sperling, and W. Vogel, Quasiprobabilities for multipartite quantum correlations of light, Phys. Rev. A 87, 033811 (2013). PLRAAN 1050-2947 10.1103/PhysRevA.87.033811
B. Kühn and W. Vogel, Visualizing nonclassical effects in phase space, Phys. Rev. A 90, 033821 (2014). PLRAAN 1050-2947 10.1103/PhysRevA.90.033821
D. N. Klyshko, Observable signs of nonclassical light, Phys. Lett. A 213, 7 (1996). PYLAAG 0375-9601 10.1016/0375-9601(96)00091-6
A. Brauer, Limits of the characteristic roots of a matrix, Duke Math. J. 13, 387 (1946). DUMJAO 0012-7094 10.1215/S0012-7094-46-01333-6
P. Shivakumar, J. Williams, and N. Rudraiah, Eigenvalues for infinite matrices, Lin. Alg. Appl. 96, 35 (1987). LAAPAW 0024-3795 10.1016/0024-3795(87)90335-1
D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Measurement of the Wigner Distribution and the Density Matrix of a Light Mode Using Optical Homodyne Tomography: Application to Squeezed States and the Vacuum, Phys. Rev. Lett. 70, 1244 (1993). PRLTAO 0031-9007 10.1103/PhysRevLett.70.1244
S. Wallentowitz and W. Vogel, Unbalanced homodyning for quantum-state measurements, Phys. Rev. A 53, 4528 (1996). PLRAAN 1050-2947 10.1103/PhysRevA.53.4528
K. Banaszek and K. Wódkiewicz, Direct Probing of Quantum Phase Space by Photon Counting, Phys. Rev. Lett. 76, 4344 (1996). PRLTAO 0031-9007 10.1103/PhysRevLett.76.4344
L. G. Lutterbach and L. Davidovich, Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps, Phys. Rev. Lett. 78, 2547 (1997). PRLTAO 0031-9007 10.1103/PhysRevLett.78.2547
K. Banaszek, C. Radzewicz, K. Wódkiewicz, and J. S. Krasiński, Direct measurement of the Wigner function by photon counting, Phys. Rev. A 60, 674 (1999). PLRAAN 1050-2947 10.1103/PhysRevA.60.674
P. Bertet, A. Auffeves, P. Maioli, S. Osnaghi, T. Meunier, M. Brune, J. M. Raimond, and S. Haroche, Direct Measurement of the Wigner Function of a One-Photon Fock State in a Cavity, Phys. Rev. Lett. 89, 200402 (2002). PRLTAO 0031-9007 10.1103/PhysRevLett.89.200402
W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH Verlag Berlin GmbH, Berlin, 2001).
L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett. 4, 205 (1979). OPLEDP 0146-9592 10.1364/OL.4.000205
H. J. Kimble, M. Dagenais, and L. Mandel, Photon Antibunching in Resonance Fluorescence, Phys. Rev. Lett. 39, 691 (1977). PRLTAO 0031-9007 10.1103/PhysRevLett.39.691
W. Vogel, Nonclassical Correlation Properties of Radiation Fields, Phys. Rev. Lett. 100, 013605 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.013605
J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30, 175 (1906). ACMAA8 0001-5962 10.1007/BF02418571
M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 2001).
M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, Properties of squeezed number states and squeezed thermal states, Phys. Rev. A 40, 2494 (1989). 0556-2791 10.1103/PhysRevA.40.2494
S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, Oxford, 2002).
L. Diósi, Comment on "Nonclassical States: An Observable Criterion", Phys. Rev. Lett. 85, 2841 (2000). PRLTAO 0031-9007 10.1103/PhysRevLett.85.2841
G. Gabrielse, S. Peil, B. Odom, and B. D'Urso, QND observation of quantum jumps between Fock states: A one-electron cyclotron oscillator at 70 mK to 4.2 K, in Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference, 1999, QELS'99, Technical Digest (IEEE, New York, 1992), pp. 19-20.
A. Reiserer, S. Ritter, and G. Rempe, Non-destructive detection of an optical photon, Science 342, 1349 (2013). SCIEAS 0036-8075 10.1126/science.1246164
C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, Progressive field-state collapse and quantum non-demolition photon counting, Nature (London) 448, 889 (2007). NATUAS 0028-0836 10.1038/nature06057
Y. F. Xiao, S. K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity, Opt. Exp. 16, 21462 (2008). OPEXFF 1094-4087 10.1364/OE.16.021462
F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect, Phys. Rev. A 79, 052115 (2009). PLRAAN 1050-2947 10.1103/PhysRevA.79.052115
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2010).
R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, New York, 1985).
D. K. L. Oi, V. Potoček, and J. Jeffers, Nondemolition Measurement of the Vacuum State or its Complement, Phys. Rev. Lett. 110, 210504 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.210504
M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O'Connell, H. Wang, J. M. Martinis, and A. N. Cleland, Generation of Fock states in a superconducting quantum circuit, Nature (London) 454, 310 (2008). NATUAS 0028-0836 10.1038/nature07136
A. Ben-Kish, B. DeMarco, V. Meyer, M. Rowe, J. Britton, W. M. Itano, B. M. Jelenković, C. Langer, D. Leibfried, T. Rosenband, and D. J. Wineland, Experimental Demonstration of a Technique to Generate Arbitrary Quantum Superposition States of a Harmonically Bound Spin-(Equation presented) Particle, Phys. Rev. Lett. 90, 037902 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.90.037902
C. K. Law and J. H. Eberly, Arbitrary Control of a Quantum Electromagnetic Field, Phys. Rev. Lett. 76, 1055 (1996). PRLTAO 0031-9007 10.1103/PhysRevLett.76.1055
Y.-X. Liu, L.-F. Wei, and F. Nori, Generation of non-classical photon states using a superconducting qubit in a quantum electrodynamic microcavity, Europhys. Lett. 67, 941 (2004). EULEEJ 0295-5075 10.1209/epl/i2004-10144-3
M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. O'Connell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, Synthesizing arbitrary quantum states in a superconducting resonator, Nature (London) 459, 546 (2009). NATUAS 0028-0836 10.1038/nature08005