Streamlining of the synthesis process of Pt/carbon xerogel electrocatalysts with high Pt loading for the oxygen reduction reaction in proton exchange membrane fuel cells applications
[en] Pt/carbon xerogel catalysts were synthesized by different methods. The strong electrostatic adsorption (SEA) method, which consists in enhancing electrostatic interactions between the support and the precursor, was first modified in order to avoid any Pt loss (charge enhanced dry impregnation, CEDI). In a second step, the synthesis was rationalized to speed up the reduction (liquid phase reduction with sodium borohydride, NaBH4). The synthesis procedure was further simplified in order to obtain one-step procedures, such as (i) reduction of highly loaded platinum solution by sodium borohydride, (ii) formic acid reduction, and (iii) colloid synthesis. All the catalysts were analyzed by physicochemical and electrochemical methods. They are compared to a reference commercial catalyst (Tanaka). The best performances are obtained by the SEA, the CEDI and the formic acid reduced catalysts, the performance of which are at least equal to, or even higher (up to 20–25% in mass activity) than those of the commercial reference. From these three methods, the only one-step method is the formic acid reduction, which allows avoiding time-consuming drying and H2 reduction steps.
Disciplines :
Materials science & engineering
Author, co-author :
Zubiaur, Anthony ; Université de Liège - ULiège > Department of Chemical Engineering > Ingéniérie électrochimique
Job, Nathalie ; Université de Liège - ULiège > Department of Chemical Engineering > Ingéniérie électrochimique
Language :
English
Title :
Streamlining of the synthesis process of Pt/carbon xerogel electrocatalysts with high Pt loading for the oxygen reduction reaction in proton exchange membrane fuel cells applications
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 56:1-2 (2005), 9–35, 10.1016/j.apcatb.2004.06.021 http://linkinghub.elsevier.com/retrieve/pii/S0926337304004941.
Gasteiger, H.A., Mathias, M.F., Fundamental research and development challenges in polymer electrolyte fuel cell technology. Murthy, M., (eds.) Proceedings of the 3rd Symposium on Proton Conducting Membrane Fuel Cells, 2002, Electrochemical Society, Salt Lake City, United States of America, 1–24.
Jaffray, C., Hards, G.A., Precious metal supply requirements. Vielstich, W., Lamm, A., Gasteiger, H.A., (eds.) Handbook of Fuel Cells – Fundamentals, Technology and Applications, vol. 3, 2003, Wiley, Chichester, United Kingdom, 509 (Chapter 41).
Maillard, F., Pronkin, S., Savinova, E.R., Influence of size on the electrocatalytic activities of supported metal nanoparticles in fuel cells related reactions. Vielstich, W., Gasteiger, H.A., Yokokawa, H., (eds.) Handbook of Fuel Cells, vol. 5, 2009, John Wiley & Sons, Ltd, Chichester, United Kingdom, 91–111, 10.1002/9780470974001.f500002a https://doi.org/. doi: 10.1002/9780470974001.f500002a.
Kinoshita, K., Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J. Electrochem. Soc. 137:3 (1990), 845–848, 10.1149/1.2086566 http://jes.ecsdl.org/content/137/3/845?related-urls=yes&legid=jes;137/3/845.
Antoine, O., Bultel, Y., Durand, R., Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®. J. Electroanal. Chem. 499:1 (2001), 85–94, 10.1016/S0022-0728(00)00492-7 http://linkinghub.elsevier.com/retrieve/pii/S0022072800004927.
Coutanceau, C., Brimaud, S., Lamy, C., Léger, J.-M., Dubau, L., Rousseau, S., Vigier, F., Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds. Electrochim. Acta 53:23 (2008), 6865–6880, 10.1016/j.electacta.2007.12.043 http://linkinghub.elsevier.com/retrieve/pii/S0013468607015071.
Maillard, F., Job, N., Chatenet, M., Approaches to synthesize carbon-supported platinum-based electrocatalysts for proton-exchange membrane fuel cells. Suib, S., (eds.) New and Future Developments in Catalysis, 1st ed., 2013, Elsevier, 407–428, 10.1016/B978-0-444-53880-2.00019-3 http://linkinghub.elsevier.com/retrieve/pii/B9780444538802000193.
Lebègue, E., Baranton, S., Coutanceau, C., Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation. J. Power Sources 196:3 (2011), 920–927, 10.1016/j.jpowsour.2010.08.107 http://linkinghub.elsevier.com/retrieve/pii/S0378775310015922.
Favilla, P., Acosta, J., Schvezov, C., Sercovich, D., Collet-Lacoste, J., Size control of carbon-supported platinum nanoparticles made using polyol method for low temperature fuel cells. Chem. Eng. Sci. 101 (2013), 27–34, 10.1016/j.ces.2013.05.067 http://linkinghub.elsevier.com/retrieve/pii/S0009250913004089.
Maric, R., Spray-based and CVD processes for synthesis of fuel cell catalysts and thin catalyst layers. Zhang, J., (eds.) PEM Fuel Cell Electrocatalysts and Catalyst Layers, 2008, Springer London, London, 917–963, 10.1007/978-1-84800-936-3_20 http://link.springer.com/. doi: 10.1007/978-1-84800-936-3_20.
Vorokhta, M., Khalakhan, I., Václavu, M., Kovács, G., Kozlov, S.M., Kúš P., Skála, T., Tsud, N., Lavková J., Potin, V., Matolínová I., Neyman, K.M., Matolín, V., Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells. Appl. Surf. Sci. 365 (2016), 245–251, 10.1016/j.apsusc.2016.01.004 http://linkinghub.elsevier.com/retrieve/pii/S0169433216000180.
Caillard, A., Charles, C., Boswell, R., Meige, A., Brault, P., Deposition of platinum catalyst by plasma sputtering for fuel cells: 3D simulation and experiments. Plasma Sources Sci. Technol., 17(3), 2008, 035028, 10.1088/0963-0252/17/3/035028 http://stacks.iop.org/0963-0252/17/i=3/a=035028?key=crossref.5fc235b8bbb8c87b50176267936a4a2e.
Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B: Environ. 88:1-2 (2009), 1–24, 10.1016/j.apcatb.2008.09.030 http://linkinghub.elsevier.com/retrieve/pii/S0926337308003809.
Saha, M.S., Neburchilov, V., Ghosh, D., Zhang, J., Nanomaterials-supported Pt catalysts for proton exchange membrane fuel cells. Wiley Interdiscip. Rev.: Energy Environ. 2:1 (2013), 31–51, 10.1002/wene.47 http://doi.wiley.com/10.1002/wene.47.
Marie, J., Berthon-Fabry, S., Achard, P., Chatenet, M., Pradourat, A., Chainet, E., Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths. J. Non-Cryst. Solids 350 (2004), 88–96, 10.1016/j.jnoncrysol.2004.06.038 http://linkinghub.elsevier.com/retrieve/pii/S0022309304008312.
Job, N., Marie, J., Lambert, S.D., Berthon-Fabry, S., Achard, P., Carbon xerogels as catalyst supports for PEM fuel cell cathode. Energy Convers. Manag. 49:9 (2008), 2461–2470, 10.1016/j.enconman.2008.03.025 http://www.sciencedirect.com/science/article/pii/S0196890408001246.
Liu, B., Creager, S., Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications. J. Power Sources 195:7 (2010), 1812–1820, 10.1016/j.jpowsour.2009.10.033 http://linkinghub.elsevier.com/retrieve/pii/S0378775309018370.
Alegre, C., Calvillo, L., Moliner, R., González-Expósito, J., Guillén-Villafuerte, O., Huerta, M.M., Pastor, E., Lázaro, M., Pt and PtRu electrocatalysts supported on carbon xerogels for direct methanol fuel cells. J. Power Sources 196:9 (2011), 4226–4235, 10.1016/j.jpowsour.2010.10.049 http://linkinghub.elsevier.com/retrieve/pii/S0378775310018483.
Calderón, J., Mahata, N., Pereira, M., Figueiredo, J., Fernandes, V., Rangel, C., Calvillo, L., Lázaro, M., Pastor, E., Pt-Ru catalysts supported on carbon xerogels for PEM fuel cells. Int. J. Hydrogen Energy 37:8 (2012), 7200–7211, 10.1016/j.ijhydene.2011.12.029 http://linkinghub.elsevier.com/retrieve/pii/S0360319911026814.
Zubiaur, A., Chatenet, M., Maillard, F., Lambert, S.D., Pirard, J.-P., Job, N., Using the multiple SEA method to synthesize Pt/carbon xerogel electrocatalysts for PEMFC applications. Fuel Cells 14:3 (2014), 343–349, 10.1002/fuce.201300208 http://doi.wiley.com/10.1002/fuce.201300208.
Alegre, C., Sebastián, D., Gálvez, M.E., Moliner, R., Lázaro, M.J., Sulfurized carbon xerogels as Pt support with enhanced activity for fuel cell applications. Appl. Catal. B: Environ. 192 (2016), 260–267, 10.1016/j.apcatb.2016.03.070 http://linkinghub.elsevier.com/retrieve/pii/S0926337316302521.
Alegre, C., Sebastián, D., Gálvez, M., Baquedano, E., Moliner, R., Aricò A., Baglio, V., Lázaro, M., N-doped carbon xerogels as Pt support for the electro-reduction of oxygen. Materials, 10(9), 2017, 1092, 10.3390/ma10091092 http://www.mdpi.com/1996-1944/10/9/1092.
Regalbuto, J., Navada, A., Shadid, S., Bricker, M., Chen, Q., An experimental verification of the physical nature of Pt adsorption onto alumina. J. Catal. 184:2 (1999), 335–348, 10.1006/jcat.1999.2471 http://www.sciencedirect.com/science/article/pii/S0021951799924715.
Regalbuto, J.R., Catalyst Preparation: Science and Engineering. 2006, CRC Press/Taylor & Francis Group, Boca Raton, USA.
Job, N., Lambert, S.D., Chatenet, M., Gommes, C.J., Maillard, F., Berthon-Fabry, S., Regalbuto, J.R., Pirard, J.-P., Preparation of highly loaded Pt/carbon xerogel catalysts for Proton Exchange Membrane fuel cells by the Strong Electrostatic Adsorption method. Catal. Today 150:1–2 (2010), 119–127, 10.1016/j.cattod.2009.06.022 http://linkinghub.elsevier.com/retrieve/pii/S092058610900354X.
Alegre, C., Gálvez, M., Moliner, R., Baglio, V., Aricò A., Lázaro, M., Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction. Appl. Catal. B: Environ. 147 (2014), 947–957, 10.1016/j.apcatb.2013.10.031 http://www.sciencedirect.com/science/article/pii/S0926337313006565.
Job, N., Maillard, F., Marie, J., Berthon-Fabry, S., Pirard, J.P., Chatenet, M., Electrochemical characterization of Pt/carbon xerogel and Pt/carbon aerogel catalysts: first insights into the influence of the carbon texture on the Pt nanoparticle morphology and catalytic activity. J. Mater. Sci. 44:24 (2009), 6591–6600, 10.1007/s10853-009-3581-x.
Pasqualeti, A.M., Olu, P.-Y., Chatenet, M., Lima, F.H.B., Borohydride electrooxidation on carbon-supported noble metal nanoparticles: insights into hydrogen and hydroxyborane formation. ACS Catal. 5:5 (2015), 2778–2787, 10.1021/acscatal.5b00107 http://pubs.acs.org/doi/abs/10.1021/acscatal.5b00107.
Piedboeuf, M.-L.C., Léonard, A.F., Traina, K., Job, N., Influence of the textural parameters of resorcinol-formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling. Colloids Surf. A: Physicochem. Eng. Asp. 471 (2015), 124–132, 10.1016/j.colsurfa.2015.02.014 http://www.sciencedirect.com/science/article/pii/S0927775715001375.
Job, N., Chatenet, M., Berthon-Fabry, S., Hermans, S., Maillard, F., Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: avoid chloride-based Pt salts!. J. Power Sources 240 (2013), 294–305, 10.1016/j.jpowsour.2013.03.188 http://www.sciencedirect.com/science/article/pii/S0378775313006010.
Guilminot, E., Corcella, A., Chatenet, M., Maillard, F., Comparing the thin-film rotating disk electrode and the ultramicroelectrode with cavity techniques to study carbon-supported platinum for proton exchange membrane fuel cell applications. J. Electroanal. Chem. 599:1 (2007), 111–120, 10.1016/j.jelechem.2006.09.022 http://www.sciencedirect.com/science/article/pii/S0022072806005559.
Maillard, F., Eikerling, M., Cherstiouk, O.V., Schreier, S., Savinova, E., Stimming, U., Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss., 125, 2004, 357, 10.1039/b303911k http://pubs.rsc.org/en/content/articlehtml/2004/fd/b303911k.
Maillard, F., Schreier, S., Hanzlik, M., Savinova, E.R., Weinkauf, S., Stimming, U., Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 7:2 (2005), 385–393, 10.1039/B411377B http://pubs.rsc.org/en/content/articlehtml/2005/cp/b411377b.
Maillard, F., Savinova, E.R., Stimming, U., CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J. Electroanal. Chem. 599:2 (2007), 221–232, 10.1016/j.jelechem.2006.02.024 http://www.sciencedirect.com/science/article/pii/S002207280600115X.
Trasatti, S., Petrii, O., Real surface area measurements in electrochemistry. J. Electroanal. Chem. 327:1–2 (1992), 353–376, 10.1016/0022-0728(92)80162-W http://www.sciencedirect.com/science/article/pii/002207289280162W.
Bard, A.J., Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications. 2nd ed., 2001, John Wiley & Sons, Inc., Weinheim, Germany http://tocs.ulb.tu-darmstadt.de/95069577.pdf.
Zhang, Z.C., Beard, B.C., Genesis of durable catalyst for selective hydrodechlorination CCl4 to CHCl3 [A4281]. Appl. Catal., 174(1–2), 1998, 33, 10.1016/S0926-860X(98)00150-1 http://linkinghub.elsevier.com/retrieve/pii/S0926860X98001501.
Coq, B., Ferrat, G., Figueras, F., Conversion of chlorobenzene over palladium and rhodium catalysts of widely varying dispersion. J. Catal. 101:2 (1986), 434–445, 10.1016/0021-9517(86)90271-X http://linkinghub.elsevier.com/retrieve/pii/002195178690271X.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.