Advancing Nuclear Medicine Through Innovation 2007, National Academy of Sciences, Washington DC.
World Nuclear Association [06/05/2015]. http://www.world-nuclear.org/info/non-power-nuclear-applications/radioisotopes/radioisotopes-in-medicine/.
Handbook of Nuclear Chemistry 2003, Kluwer Academic Publishers.
Saha G.B. Fundamentals of Nuclear Pharmacy 2010, Springer. 6th edit.
Aerts A., Impens N.R., Gijs M., D'Huyvetter M., Vanmarcke H., Ponsard B., et al. Biological carrier molecules of radiopharmaceuticals for molecular cancer imaging and targeted cancer therapy. Curr Pharm Des 2014, 20:5218-5244.
Enrique Morales-Avila G.F.-F., Ocampo-García Blanca E., de María Ramírez Flor Radiolabeled Nanoparticles for Molecular Imaging. Molecular Imaging: InTech 2012, P.B. Schaller (Ed.).
Goins B.A. Radiolabeled lipid nanoparticles for diagnostic imaging. Expert Opin Med Diagn 2008, 2:853-873.
Benezra M., Penate-Medina O., Zanzonico P.B., Schaer D., Ow H., Burns A., et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 2011, 121:2768-2780.
Blouin S., Mulhbacher J., Penedo J.C., Lafontaine D.A. Riboswitches: ancient and promising genetic regulators. Chembiochem 2009, 10:400-416.
Mandal M., Breaker R.R. Gene regulation by riboswitches. Nat Rev Mol Cell Biol 2004, 5:451-463.
Bouchard P.R., Hutabarat R.M., Thompson K.M. Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 2010, 50:237-257.
Kage F.P.H.A. Aptamers the Chemical Antibodies. Antibodies Applications and New Developments 2012, 300-314. Bentham Science Publishers. E.P. Meulenberg (Ed.).
Keefe A.D., Pai S., Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov 2010, 9:537-550.
Mayer G. The chemical biology of aptamers. Angew Chem Int Ed Engl 2009, 48:2672-2689.
Jenison R.D., Gill S.C., Pardi A., Polisky B. High-resolution molecular discrimination by RNA. Science 1994, 263:1425-1429.
Sassanfar M., Szostak J.W. An RNA motif that binds ATP. Nature 1993, 364:550-553.
Geiger A., Burgstaller P., von der Eltz H., Roeder A., Famulok M. RNA aptamers that bind l-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 1996, 24:1029-1036.
Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249:505-510.
Ellington A.D., Szostak J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346:818-822.
Robertson D.L., Joyce G.F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990, 344:467-468.
Germer K., Leonard M., Zhang X. RNA aptamers and their therapeutic and diagnostic applications. Int J Biochem Mol Biol 2013, 4:27-40.
Levy-Nissenbaum E., Radovic-Moreno A.F., Wang A.Z., Langer R., Farokhzad O.C. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 2008, 26:442-449.
Mascini M., Palchetti I., Tombelli S. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed 2012, 51:1316-1332.
McKeague M., Derosa M.C. Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012, 2012:748913.
Ozer A., Pagano J.M., Lis J.T. New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Mol Ther Nucleic Acids 2014, 3:e183.
Yang X., Li N., Gorenstein D.G. Strategies for the discovery of therapeutic aptamers. Expert Opin Drug Discov 2011, 6:75-87.
Yang Y., Yang D., Schluesener H.J., Zhang Z. Advances in SELEX and application of aptamers in the central nervous system. Biomol Eng 2007, 24:583-592.
Ciesiolka J., Gorski J., Yarus M. Selection of an RNA domain that binds Zn2+. RNA 1995, 1:538-550.
Shangguan D., Li Y., Tang Z., Cao Z.C., Chen H.W., Mallikaratchy P., et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 2006, 103:11838-11843.
Bruno J., Carrillo M., Richarte A., Phillips T., Andrews C., Lee J. Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses. BMC Res Notes 2012, 5:633.
Bruno J.G., Kiel J.L. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron 1999, 14:457-464.
Famulok M. Molecular recognition of amino acids by RNA aptamers: an l-citrulline binding RNA motif and its evolution into an l-arginine binder. J Am Chem Soc 1994, 116:1698-1706.
Famulok M., Hartig J.S., Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 2007, 107:3715-3743.
Mascini M. Aptamers in Bioanalysis 2009, Wiley.
Kaur G., Roy I. Therapeutic applications of aptamers. Expert Opin Investig Drugs 2008, 17:43-60.
Missailidis S., Hardy A. Aptamers as inhibitors of target proteins. Expert Opin Ther Pat 2009, 19:1073-1082.
Ng E.W., Shima D.T., Calias P., Cunningham E.T., Guyer D.R., Adamis A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006, 5:123-132.
Cunningham E.T., Adamis A.P., Altaweel M., Aiello L.P., Bressler N.M., D'Amico D.J. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 2005, 112:1747-1757.
Querques G., Bux A.V., Martinelli D., Iaculli C., Noci N.D. Intravitreal pegaptanib sodium (Macugen®) for diabetic macular oedema. Acta Ophthalmol 2009, 87:623-630.
Sultan M.B., Zhou D., Loftus J., Dombi T., Ice K.S. A phase 2/3, multicenter, randomized, double-masked, 2-year trial of pegaptanib sodium for the treatment of diabetic macular edema. Ophthalmology 2011, 118:1107-1118.
Giuliari G.P., Guel D.A., Gonzalez V.H. Pegaptanib sodium for the treatment of proliferative diabetic retinopathy and diabetic macular edema. Curr Diabetes Rev 2009, 5:33-38.
Pei X., Zhang J., Liu J. Clinical applications of nucleic acid aptamers in cancer. Mol Clin Oncol 2014, 2:341-348.
Rosenberg J.E., Bambury R.M., Van Allen E.M., Drabkin H.A., Lara P.N., Harzstark A.L., et al. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs 2014, 32:178-187.
Dobrovolsky A.B., Titaeva E.V., Khaspekova S.G., Spiridonova V.A., Kopylov A.M., Mazurov A.V. Inhibition of thrombin activity with DNA-aptamers. Bull Exp Biol Med 2009, 148:33-36.
Rusconi C.P., Scardino E., Layzer J., Pitoc G.A., Ortel T.L., Monroe D., et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 2002, 419:90-94.
Rusconi C.P., Roberts J.D., Pitoc G.A., Nimjee S.M., White R.R., Quick G., et al. Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotech 2004, 22:1423-1428.
[04/05/2015]. http://www.regadobio.com.
Dassie J.P., Giangrande P.H. Current progress on aptamer-targeted oligonucleotide therapeutics. Ther Deliv 2013, 4:1527-1546.
McNamara J.O., Kolonias D., Pastor F., Mittler R.S., Chen L., Giangrande P.H., et al. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 2008, 118:376-386.
Hicke B.J., Stephens A.W. Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest 2000, 106:923-928.
Bagalkot V., Farokhzad O.C., Langer R., Jon S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl 2006, 45:8149-8152.
Chu T.C., Marks J.W., Lavery L.A., Faulkner S., Rosenblum M.G., Ellington A.D., et al. Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 2006, 66:5989-5992.
Farokhzad O.C., Jon S., Khademhosseini A., Tran T.N., Lavan D.A., Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 2004, 64:7668-7672.
Farokhzad O.C., Karp J.M., Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006, 3:311-324.
Pastor F., Kolonias D., Giangrande P.H., Gilboa E. Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature 2010, 465:227-230.
Ray P., White R.R. Aptamers for targeted drug delivery. Pharmaceuticals 2010, 3:1761-1778.
Catuogno S.C.L.E. Current progress and future prospects of aptamer-based cancer therapy. J Postdoctoral Res 2013, 1:1-10.
Wang C., Liu B., Lu J., Zhang G., Lu A. Strategies for combination of aptamer and targeted drug delivery. J Nanosci Nanotechnol 2014, 14:501-512.
Bunka D.H., Platonova O., Stockley P.G. Development of aptamer therapeutics. Curr Opin Pharmacol 2010, 10:557-562.
Kang K.N., Lee Y.S. RNA aptamers: a review of recent trends and applications. Adv Biochem Eng Biotechnol 2013, 131:153-169.
Lao Y.H., Phua K.K., Leong K.W. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano 2015, 9:2235-2254.
Ni X., Castanares M., Mukherjee A., Lupold S.E. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 2011, 18:4206-4214.
Peixuan Guo F.H. RNA Nanotechnology and Therapeutics 2013, CRC Press.
Sun H., Zhu X., Lu P.Y., Rosato R.R., Tan W., Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids 2014, 3:e182.
Sundaram P., Kurniawan H., Byrne M.E., Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 2013, 48:259-271.
Hong P., Li W., Li J. Applications of aptasensors in clinical diagnostics. Sensors 2012, 12:1181-1193.
Yamamoto R., Baba T., Kumar P.K. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 2000, 5:389-396.
Chang Y.M., Donovan M.J., Tan W. Using aptamers for cancer biomarker discovery. J Nucleic Acids 2013, 2013:817350.
Liu X., Zhang X. Aptamer-based technology for food analysis. Appl Biochem Biotechnol 2015, 175:603-624.
Sett A.S.D., Sharma P., Bora U. Aptasensors in health, environment and food safety monitoring. Open J Appl Biosensor 2012, 1:9-19.
Penner G. Commercialization of an Aptamer-Based Diagnostic Test. IVD Technology 2012, 31-37.
Gold L., Ayers D., Bertino J., Bock C., Bock A., Brody E.N., et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 2010, 5:e15004.
Berezovski M.V., Lechmann M., Musheev M.U., Mak T.W., Krylov S.N. Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc 2008, 130:9137-9143.
Hu M., Zhang K. The application of aptamers in cancer research: an up-to-date review. Future Oncol 2013, 9:369-376.
Miyakawa S., Nomura Y., Sakamoto T., Yamaguchi Y., Kato K., Yamazaki S., et al. Structural and molecular basis for hyperspecificity of RNA aptamer to human immunoglobulin G. RNA 2008, 14:1154-1163.
Borkowski S., Dinkelborg L. The Aptamer Handbook 2006, Wiley.
Adams G.P., Schier R., McCall A.M., Simmons H.H., Horak E.M., Alpaugh R.K., et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001, 61:4750-4755.
Fujimori K., Covell D.G., Fletcher J.E., Weinstein J.N. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 1990, 31:1191-1198.
Juweid M., Neumann R., Paik C., Perez-Bacete M.J., Sato J., van Osdol W., et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 1992, 52:5144-5153.
Rudnick S.I., Lou J., Shaller C.C., Tang Y., Klein-Szanto A.J., Weiner L.M., et al. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res 2011, 71:2250-2259.
van Osdol W., Fujimori K., Weinstein J.N. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a "binding site barrier". Cancer Res 1991, 51:4776-4784.
International Atomic Energy Agency Techneticum-99m radiopharmaceuticals: status and trends - Vienna 2009 - International Atomic Energy Agency (IAEA). IAEA Radioisotopes and Radiopharmaceuticals Series 2009, 1.
Waring M.J. Lipophilicity in drug discovery. Expert Opin Drug Discov 2010, 5:235-248.
Xiang D., Zheng C., Zhou S.F., Qiao S., Tran P.H., Pu C., et al. Superior performance of aptamer in tumor penetration over antibody: implication of aptamer-based theranostics in solid tumors. Theranostics 2015, 5:1083-1097.
Hicke B.J., Stephens A.W., Gould T., Chang Y.F., Lynott C.K., Heil J., et al. Tumor targeting by an aptamer. J Nucl Med 2006, 47:668-678.
Shigdar S., Macdonald J., O'Connor M., Wang T., Xiang D., Al Shamaileh H., et al. Aptamers as theranostic agents: modifications, serum stability and functionalisation. Sensors 2013, 13:13624-13637.
Shigdar S., Qiao L., Zhou S.F., Xiang D., Wang T., Li Y., et al. RNA aptamers targeting cancer stem cell marker CD133. Cancer Lett 2013, 330:84-95.
Xiang D., Shigdar S., Qiao G., Wang T., Kouzani A.Z., Zhou S.F., et al. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics 2015, 5:23-42.
Evtugyn G., Porfireva A., Stepanova V., Sitdikov R., Stoikov I., Nikolelis D., et al. Electrochemical aptasensor based on polycarboxylic macrocycle modified with neutral red for aflatoxin B1 detection. Electroanalysis 2014, 26:2100-2109.
Pendergrast P., Marsh H., Grate D., Healy J., Stanton M. Nucleic acid aptamers for target validation and therapeutic applications. J Biomol Technol 2005, 16:224-234.
Borbas K.E., Ferreira C.S., Perkins A., Bruce J.I., Missailidis S. Design and synthesis of mono- and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug Chem 2007, 18:1205-1212.
Charlton J., Sennello J., Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 1997, 4:809-816.
Olafsen T., Wu A.M. Antibody vectors for imaging. Semin Nucl Med 2010, 40:167-181.
Damha M.J., Wilds C.J., Noronha A., Brukner I., Borkow G., Arion D., et al. Hybrids of RNA and arabinonucleic acids (ANA and 2'F-ANA) are substrates of ribonuclease H. J Am Chem Soc 1998, 120:12976-12977.
Bronzino J.D.D.R.P. Tissue Engineering and Artificial Organs 2006, Taylor & Francis. 3rd edit.
Kang K.N., Lee Y.S. RNA Aptamers: A Review of Recent Trends and Applications 2013, Springer.
Kanwar J.R., Roy K., Kanwar R.K. Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 2011, 46:459-477.
Tolle F., Mayer G. Dressed for success - applying chemistry to modulate aptamer functionality. Chem Sci 2013, 4:60-67.
Hudziak R.M., Barofsky E., Barofsky D.F., Weller D.L., Huang S.B., Weller D.D. Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev 1996, 6:267-272.
Apte R.S. Pegaptanib sodium for the treatment of age-related macular degeneration. Expert Opin Pharmacother 2008, 9:499-508.
Swayze E.E., Siwkowski A.M., Wancewicz E.V., Migawa M.T., Wyrzykiewicz T.K., Hung G., et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 2007, 35:687-700.
Levin A.A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1999, 1489:69-84.
Wlotzka B., Leva S., Eschgfaller B., Burmeister J., Kleinjung F., Kaduk C., et al. In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci U S A 2002, 99:8898-8902.
Apte R.S., Modi M., Masonson H., Patel M., Whitfield L., Adamis A.P. Pegaptanib 1-year systemic safety results from a safety-pharmacokinetic trial in patients with neovascular age-related macular degeneration. Ophthalmology 2007, 114:1702-1712.
Healy J., Lewis S., Kurz M., Boomer R., Thompson K., Wilson C., et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 2004, 21:2234-2246.
Burmeister P.E., Lewis S.D., Silva R.F., Preiss J.R., Horwitz L.R., Pendergrast P.S., et al. Direct in vitro selection of a 2'-O-methyl aptamer to VEGF. Chem Biol 2005, 12:25-33.
Dougan H., Lyster D.M., Vo C.V., Stafford A., Weitz J.I., Hobbs J.B. Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl Med Biol 2000, 27:289-297.
Willis M.C., Collins B.D., Zhang T., Green L.S., Sebesta D.P., Bell C., et al. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug Chem 1998, 9:573-582.
Thiel K.W., Giangrande P.H. Intracellular delivery of RNA-based therapeutics using aptamers. Ther Deliv 2010, 1:849-861.
Chen C.H., Dellamaggiore K.R., Ouellette C.P., Sedano C.D., Lizadjohry M., Chernis G.A., et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci U S A 2008, 105:15908-15913.
Kang H., O'Donoghue M.B., Liu H., Tan W. A liposome-based nanostructure for aptamer directed delivery. Chem Commun 2010, 46:249-251.
Wu Y., Sefah K., Liu H., Wang R., Tan W. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci 2010, 107:5-10.
Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432:173-178.
Cheng Y., Morshed R.A., Auffinger B., Tobias A.L., Lesniak M.S. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 2014, 66:42-57.
Masserini M. Nanoparticles for brain drug delivery. ISRN, Biochem 2013, 2013:18.
Pardridge W.M. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012, 32:1959-1972.
Gao H., Qian J., Cao S., Yang Z., Pang Z., Pan S., et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 2012, 33:5115-5123.
Wolburg H., Noell S., Fallier-Becker P., Mack A.F., Wolburg-Buchholz K. The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med 2012, 33:579-589.
Sugiura G., Kuhn H., Sauter M., Haberkorn U., Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules 2014, 19:2135-2165.
Vallabhajosula S. Molecular Imaging - Radiopharmaceuticals for PET and SPECT 2009, Springer.
Aerts J., Ballinger J.R., Behe M., Decristoforo C., Elsinga P.H., Faivre-Chauvet A., et al. Guidance on current good radiopharmacy practice for the small-scale preparation of radiopharmaceuticals using automated modules: a European perspective. J Labelled Comp Radiopharm 2014, 57:615-620.
Dolle F., Hinnen F., Vaufrey F., Tavitian B., Crouzel C. A general method for labeling oligodeoxynucleotides with 18F for in vivo PET imaging. J Label Compd Radiopharm 1997, 39:319-330.
Younes C.K., Boisgard R., Tavitian B. Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. Curr Pharm Des 2002, 8:1451-1466.
Dollé BK F., Terrazzino S., Tavitian B., Hinnen F., Vaufrey F., Crouzel C. XIIth International Symposium on Radiopharmaceutical Chemistry: abstracts and programme. J Label Compd Radiopharm 1997, 40:1-72.
Kuhnast B., Dolle F., Tavitian B. Fluorine-18 labeling of peptide nucleic acids. J Label Compd Radiopharm 2002, 45:1-11.
Kuhnast B., Hinnen F., Boisgard R., Tavitian B., Dollé F. Fluorine-18 labelling of oligonucleotides: prosthetic labelling at the 5'-end using the N-(4-[18F]fluorobenzyl)-2-bromoacetamide reagent. J Label Compd Radiopharm 2003, 46:1093-1103.
Tavitian B., Terrazzino S., Kuhnast B., Marzabal S., Stettler O., Dolle F., et al. In vivo imaging of oligonucleotides with positron emission tomography. Nat Med 1998, 4:467-471.
Boisgard R., Kuhnast B., Vonhoff S., Younes C., Hinnen F., Verbavatz J.M., et al. In vivo biodistribution and pharmacokinetics of 18F-labelled Spiegelmers: a new class of oligonucleotidic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 2005, 32:470-477.
Kuhnast B., de Bruin B., Hinnen F., Tavitian B., Dolle F. Design and synthesis of a new [18F]fluoropyridine-based haloacetamide reagent for the labeling of oligonucleotides: 2-bromo-N-[3-(2-[18F]fluoropyridin-3-yloxy)propyl]acetamide. Bioconjug Chem 2004, 15:617-627.
Viel T., Boisgard R., Kuhnast B., Jego B., Siquier-Pernet K., Hinnen F., et al. Molecular imaging study on in vivo distribution and pharmacokinetics of modified small interfering RNAs (siRNAs). Oligonucleotides 2008, 18:201-212.
Viel T., Kuhnast B., Hinnen F., Boisgard R., Tavitian B., Dollé F. Fluorine-18 labelling of small interfering RNAs (siRNAs) for PET imaging. J Label Compd Radiopharm 2007, 50:1159-1168.
de Vries E.F., Vroegh J., Dijkstra G., Moshage H., Elsinga P.H., Jansen P.L., et al. Synthesis and evaluation of a fluorine-18 labeled antisense oligonucleotide as a potential PET tracer for iNOS mRNA expression. Nucl Med Biol 2004, 31:605-612.
Hedberg E.B.L. Synthesis of 4-([18F]fluoromethyl)phenyl isothiocyanate and its use in labelling oligonucleotides. Acta Chem Scand 1997, 51:1236-1240.
Hedberg E.B.L. 18F-Labelling of oligonucleotides using succinimido 4-[18F]fluorobenzoate. Acta Chem Scand 1998, 52:1034-1039.
Hatanaka K., Asai T., Koide H., Kenjo E., Tsuzuku T., Harada N., et al. Development of double-stranded siRNA labeling method using positron emitter and its in vivo trafficking analyzed by positron emission tomography. Bioconjug Chem 2010, 21:756-763.
Ramenda T., Steinbach J., Wuest F. 4-[18F]Fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([18F]F-SA): a versatile building block for labeling of peptides, proteins and oligonucleotides with fluorine-18 via Cu(I)-mediated click chemistry. Amino Acids 2013, 44:1167-1180.
Inkster J.A., Adam M.J., Storr T., Ruth T.J. Labeling of an antisense oligonucleotide with [(18)F]FPy5yne. Nucleosides Nucleotides Nucleic Acids 2009, 28:1131-1143.
Flagothier J., Kaisin G., Mercier F., Thonon D., Teller N., Wouters J., et al. Synthesis of two new alkyne-bearing linkers used for the preparation of siRNA for labeling by click chemistry with fluorine-18. Appl Radiat Isot 2012, 70:1549-1557.
Mercier F., Paris J., Kaisin G., Thonon D., Flagothier J., Teller N., et al. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging. Bioconjug Chem 2011, 22:108-114.
Lange C.W., VanBrocklin H.F., Taylor S.E. Photoconjugation of 3-azido-5-nitrobenzyl-[18F]fluoride to an oligonucleotide aptamer. J Label Compd Radiopharm 2002, 45:257-268.
Yngve U.E.H., Lövqvist A., Tolmachev V., Langström B. Synthesis of N-succinimidyl 4-[76Br]bromobenzoate and its use in conjugation labelling of macromolecules. Acta Chem Scand 1999, 53:508-512.
Wu F., Yngve U., Hedberg E., Honda M., Lu L., Eriksson B., et al. Distribution of (76)Br-labeled antisense oligonucleotides of different length determined ex vivo in rats. Eur J Pharm Sci 2000, 10:179-186.
Dougan H., Hobbs J.B., Weitz J.I., Lyster D.M. Synthesis and radioiodination of a stannyl oligodeoxyribonucleotide. Nucleic Acids Res 1997, 25:2897-2901.
Dougan H., Weitz J.I., Stafford A.R., Gillespie K.D., Klement P., Hobbs J.B., et al. Evaluation of DNA aptamers directed to thrombin as potential thrombus imaging agents. Nucl Med Biol 2003, 30:61-72.
Dewanjee M.K., Ghafouripour A.K., Werner R.K., Serafini A.N., Sfakianakis G.N. Development of sensitive radioiodinated anti-sense oligonucleotide probes by conjugation technique. Bioconjug Chem 1991, 2:195-200.
Cammilleri S., Sangrajrang S., Perdereau B., Brixy F., Calvo F., Bazin H., et al. Biodistribution of iodine-125 tyramine transforming growth factor alpha antisense oligonucleotide in athymic mice with a human mammary tumour xenograft following intratumoral injection. Eur J Nucl Med 1996, 23:448-452.
Kuhnast B., Dolle F., Terrazzino S., Rousseau B., Loc'h C., Vaufrey F., et al. General method to label antisense oligonucleotides with radioactive halogens for pharmacological and imaging studies. Bioconjug Chem 2000, 11:627-636.
Schlesinger RB J., Klussmann S., Wuest F. Synthesis and radiopharmacological characterisation of 86Y- and 68Ga-labelled l-RNA oligonucleotides as molecular probes for positron emission tomography (PET). Lett Drug Design Discov 2006, 3:330-335.
Kiviniemi A., Makela J., Makila J., Saanijoki T., Liljenback H., Poijarvi-Virta P., et al. Solid-supported NOTA and DOTA chelators useful for the synthesis of 3'-radiometalated oligonucleotides. Bioconjug Chem 2012, 23:1981-1988.
Lendvai G., Monazzam A., Velikyan I., Eriksson B., Josephsson R., Langstrom B., et al. Non-hybridization saturable mechanisms play a role in the uptake of (68)Ga-labeled LNA-DNA mixmer antisense oligonucleotides in rats. Oligonucleotides 2009, 19:223-232.
Lendvai G., Velikyan I., Bergstrom M., Estrada S., Laryea D., Valila M., et al. Biodistribution of 68Ga-labelled phosphodiester, phosphorothioate, and 2'-O-methyl phosphodiester oligonucleotides in normal rats. Eur J Pharm Sci 2005, 26:26-38.
Lendvai G., Velikyan I., Estrada S., Eriksson B., Langstrom B., Bergstrom M. Biodistribution of 68Ga-labeled LNA-DNA mixmer antisense oligonucleotides for rat chromogranin-A. Oligonucleotides 2008, 18:33-49.
Roivainen A., Tolvanen T., Salomaki S., Lendvai G., Velikyan I., Numminen P., et al. 68Ga-Labeled oligonucleotides for in vivo imaging with PET. J Nucl Med 2004, 45:347-355.
Velikyan I., Lendvai G., Välilä M., Roivainen A., Yngve U., Bergström M., et al. Microwave accelerated 68Ga-labelling of oligonucleotides. J Label Compd Radiopharm 2004, 47:79-89.
Sun X., Fang H., Li X., Rossin R., Welch M.J., Taylor J.S. MicroPET imaging of MCF-7 tumors in mice via UNR mRNA-targeted peptide nucleic acids. Bioconjug Chem 2005, 16:294-305.
Tian X., Aruva M.R., Zhang K., Shanthly N., Cardi C.A., Thakur M.L., et al. PET imaging of CCND1 mRNA in human MCF7 estrogen receptor-positive breast cancer xenografts with oncogene-specific [64Cu]chelator-peptide nucleic acid-IGF1 analog radiohybridization probes. J Nucl Med 2007, 48:1699-1707.
Tian X., Chakrabarti A., Amirkhanov N.V., Aruva M.R., Zhang K., Mathew B., et al. External imaging of CCND1, MYC, and KRAS oncogene mRNAs with tumor-targeted radionuclide-PNA-peptide chimeras. Ann N Y Acad Sci 2005, 1059:106-144.
Shaffer JG T., Levy M. Radiolabeling a PSMA-specific RNA aptamer with the PET tracer zirconium-89 http://www.wmis.org/abstracts/2013/data/papers/P159.htm.
Dewanjee M.K., Ghafouripour A.K., Kapadvanjwala M., Dewanjee S., Serafini A.N., Lopez D.M., et al. Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 1994, 35:1054-1063.
Fujibayashi Y., Yoshimi E., Waki A., Sakahara H., Saga T., Konishi J., et al. A novel 111In-labeled antisense DNA probe with multi-chelating sites (MCS-probe) showing high specific radioactivity and labeling efficiency. Nucl Med Biol 1999, 26:17-21.
Lewis M.R., Jia F., Gallazzi F., Wang Y., Zhang J., Shenoy N., et al. Radiometal-labeled peptide-PNA conjugates for targeting Bcl-2 expression: preparation, characterization, and in vitro mRNA binding. Bioconjug Chem 2002, 13:1176-1180.
Liu G., Cheng D., Dou S., Chen X., Liang M., Pretorius P.H., et al. Replacing 99mTc with 111In improves MORF/cMORF pretargeting by reducing intestinal accumulation. Mol Imaging Biol 2009, 11:303-307.
Hnatowich D.J., Winnard P., Virzi F., Fogarasi M., Sano T., Smith C.L., et al. Technetium-99m labeling of DNA oligonucleotides. J Nucl Med 1995, 36:2306-2314.
Winnard P., Chang F., Rusckowski M., Mardirossian G., Hnatowich D.J. Preparation and use of NHS-MAG3 for technetium-99m labeling of DNA. Nucl Med Biol 1997, 24:425-432.
Mardirossian G., Lei K., Rusckowski M., Chang F., Qu T., Egholm M., et al. In vivo hybridization of technetium-99m-labeled peptide nucleic acid (PNA). J Nucl Med 1997, 38:907-913.
Zhang Y.M., Liu N., Zhu Z.H., Rusckowski M., Hnatowich D.J. Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA. Eur J Nucl Med 2000, 27:1700-1707.
Liu G., Mang'era K., Liu N., Gupta S., Rusckowski M., Hnatowich D.J. Tumor pretargeting in mice using 99mTc-labeled morpholino, a DNA analog. J Nucl Med 2002, 43:384-391.
Liu G., Zhang S., He J., Zhu Z., Rusckowski M., Hnatowich D.J. Improving the labeling of S-acetyl NHS-MAG(3)-conjugated morpholino oligomers. Bioconjug Chem 2002, 13:893-897.
Mang'era K.O., Liu G., Yi W., Zhang Y., Liu N., Gupta S., et al. Initial investigations of 99mTc-labeled morpholinos for radiopharmaceutical applications. Eur J Nucl Med 2001, 28:1682-1689.
Zhang Y., He J., Liu G., Venderheyden J.L., Gupta S., Rusckowski M., et al. Initial observations of 99mTc labelled locked nucleic acids for antisense targeting. Nucl Med Commun 2004, 25:1113-1118.
Hilger C.S., Willis M.C., Wolters M., Pieken W.A. Synthesis of Tc-99m-labeled, modified RNA. Tetrahedron Lett 1998, 39:9403-9406.
Hilger C.S., Willis M.C., Wolters M., Pieken W.A. Tc-99m-labeling of modified RNA. Nucleosides Nucleotides 1999, 18:1479-1481.
Dewanjee EKG M.K., Subramanian M., Hanna M., Kapadvanjwala M., Serafini A.N., Ezuddin S., et al. Labeling antisense deoxyoligonucleotide with Tc-99m and hybridization with c-myc oncogene mRNA in P388 leukemic cells. J Label Compd Radiopharm 1994, 35:40-42.
Hjelstuen O.K., Saetern A.M., Tonnesen H.H., Bremer P.O., Verbruggen A.M. Development of a lyophilized kit formulation for labeling of DNA probes with 99mTc. Int J Pharm 1999, 190:197-205.
Correa C.R., de Barros A.L., Ferreira Cde A., de Goes A.M., Cardoso V.N., de Andrade A.S. Aptamers directly radiolabeled with technetium-99m as a potential agent capable of identifying carcinoembryonic antigen (CEA) in tumor cells T84. Bioorg Med Chem Lett 2014, 24:1998-2001.
dos Santos S.R., Rodrigues Corrêa C., de Barros AL Branco, Serakides R., Fernandes S.O., Cardoso V.N., et al. Identification of Staphylococcus aureus infection by aptamers directly radiolabeled with technetium-99m. Nucl Med Biol 2015, 42:292-298.
Liu C.B., Liu G.Z., Liu N., Zhang Y.M., He J., Rusckowski M., et al. Radiolabeling morpholinos with 90Y, 111In, 188Re and 99mTc. Nucl Med Biol 2003, 30:207-214.
Liu G., Dou S., Liu Y., Wang Y., Rusckowski M., Hnatowich D.J. 90Y Labeled phosphorodiamidate morpholino oligomer for pretargeting radiotherapy. Bioconjug Chem 2011, 22:2539-2545.
Fathi M., Yavari K., Taghikhani M., Ghannadi Maragheh M. Synthesis of a stabilized 177Lu-siRNA complex and evaluation of its stability and RNAi activity. Nucl Med Commun 2015, 36:636-645.
He J., Liu C., Vanderheyden J.L., Liu G., Dou S., Rusckowski M., et al. Radiolabelling morpholinos with 188Re tricarbonyl provides improved in vitro and in vivo stability to re-oxidation. Nucl Med Commun 2004, 25:731-736.
Liu G., Dou S., He J., Yin D., Gupta S., Zhang S., et al. Radiolabeling of MAG3-morpholino oligomers with 188Re at high labeling efficiency and specific radioactivity for tumor pretargeting. Appl Radiat Isot 2006, 64:971-978.
He Y., Panyutin I.G., Karavanov A., Demidov V.V., Neumann R.D. Sequence-specific DNA strand cleavage by 111In-labeled peptide nucleic acids. Eur J Nucl Med Mol Imaging 2004, 31:837-845.
Kobori N., Imahori Y., Mineura K., Ueda S., Fujii R. Visualization of mRNA expression in CNS using 11C-labeled phosphorothioate oligodeoxynucleotide. Neuroreport 1999, 10:2971-2974.
Gaidamakova E.K., Neumann R.D., Panyutin I.G. Site-specific strand breaks in RNA produced by (125)I radiodecay. Nucleic Acids Res 2002, 30:4960-4965.
Karamychev V.N., Panyutin I.G., Reed M.W., Neumann R.D. Effect of radionuclide linker structure on DNA cleavage by 125I-labeled oligonucleotides. Antisense Nucleic Acid Drug Dev 1997, 7:549-557.
Pan D., Gambhir S.S., Toyokuni T., Iyer M.R., Acharya N., Phelps M.E., et al. Rapid synthesis of a 5'-fluorinated oligodeoxy-nucleotide: a model antisense probe for use in imaging with positron emission tomography (PET). Bioorg Med Chem Lett 1998, 8:1317-1320.
Panyutin I.G., Neumann R.D. Sequence-specific DNA breaks produced by triplex-directed decay of iodine-125. Acta Oncol 1996, 35:817-823.
Panyutin I.G., Neumann R.D. Radioprobing of DNA: distribution of DNA breaks produced by decay of 125I incorporated into a triplex-forming oligonucleotide correlates with geometry of the triplex. Nucleic Acids Res 1997, 25:883-887.
Panyutin I.G., Winters T.A., Feinendegen L.E., Neumann R.D. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy. Q J Nucl Med 2000, 44:256-267.
Reed M.W., Panyutin I.G., Hamlin D., Lucas D.D., Wilbur D.S. Synthesis of 125I-labeled oligonucleotides from tributylstannylbenzamide conjugates. Bioconjug Chem 1997, 8:238-243.
Sa L.T., Simmons S., Missailidis S., da Silva M.I., Santos-Oliveira R. Aptamer-based nanoparticles for cancer targeting. J Drug Target 2013, 21:427-434.
Sedelnikova O.A., Luu A.N., Karamychev V.N., Panyutin I.G., Neumann R.D. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for antigene radiotherapy. Int J Radiat Oncol Biol Phys 2001, 49:391-396.
Bandekar A., Zhu C., Jindal R., Bruchertseifer F., Morgenstern A., Sofou S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular alpha-particle therapy of cancer. J Nucl Med 2014, 55:107-114.
Hwang do W., Ko H.Y., Lee J.H., Kang H., Ryu S.H., Song I.C., et al. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 2010, 51:98-105.
Bless N.M., Smith D., Charlton J., Czermak B.J., Schmal H., Friedl H.P., et al. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury. Curr Biol 1997, 7:877-880.
Bock L.C., Griffin L.C., Latham J.A., Vermaas E.H., Toole J.J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992, 355:564-566.
Tasset D.M., Kubik M.F., Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 1997, 272:688-698.
Cao X., Li S., Chen L., Ding H., Xu H., Huang Y., et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 2009, 37:4621-4628.
Hicke B.J., Marion C., Chang Y.F., Gould T., Lynott C.K., Parma D., et al. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 2001, 276:48644-48654.
Zhang H. (99m)Tc-Mercaptoacetyl-Glu-Glu-Aptamer Specific for Tenascin-C. Molecular Imaging and Contrast Agent Database (MICAD) 2004, National Center for Biotechnology Information (US), Bethesda (MD).
Friebe M.L.D., Hecht M., Dollé F., Kuhnast B., Hinnen F., Boisgard R., et al. WO 2009033876 A1 - Aptamers Labeled with 18F [04/05/2015]. http://www.google.com/patents/WO2009033876A1?cl=en.
Boisgard BK R., Jego B., Siquier K., Hinnen F., Dollé F., Friebe M., et al. In vivo PET tumour imaging using an [F-18] labelled aptamer targeting tenascin-C. J Nucl Med 2009, 50:1594.
Wang A.Z., Farokhzad O.C. Current progress of aptamer-based molecular imaging. J Nucl Med 2014, 55:353-356.
Ferreira C.S., Matthews C.S., Missailidis S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 2006, 27:289-301.
Pieve C.D., Perkins A.C., Missailidis S. Anti-MUC1 aptamers: radiolabelling with (99m)Tc and biodistribution in MCF-7 tumour-bearing mice. Nucl Med Biol 2009, 36:703-710.
Da Pieve C., Blackshaw E., Missailidis S., Perkins A.C. PEGylation and biodistribution of an anti-MUC1 aptamer in MCF-7 tumor-bearing mice. Bioconjug Chem 2012, 23:1377-1381.
Da Pieve C., Williams P., Haddleton D.M., Palmer R.M., Missailidis S. Modification of thiol functionalized aptamers by conjugation of synthetic polymers. Bioconjug Chem 2010, 21:169-174.
Lupold S.E., Hicke B.J., Lin Y., Coffey D.S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 2002, 62:4029-4033.
Scaggiante B., Dapas B., Farra R., Grassi M., Pozzato G., Giansante C., et al. Aptamers as targeting delivery devices or anti-cancer drugs for fighting tumors. Curr Drug Metab 2013, 14:565-582.
Rockey W.M., Huang L., Kloepping K.C., Baumhover N.J., Giangrande P.H., Schultz M.K. Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg Med Chem 2011, 19:4080-4090.
Da Rocha Gomes S., Miguel J., Azema L., Eimer S., Ries C., Dausse E., et al. (99m)Tc-MAG3-aptamer for imaging human tumors associated with high level of matrix metalloprotease-9. Bioconjug Chem 2012, 23:2192-2200.
Wu X., Liang H., Tan Y., Yuan C., Li S., Li X., et al. Cell-SELEX aptamer for highly specific radionuclide molecular imaging of glioblastoma in vivo. PLoS One 2014, 9:e90752.
Li N., Nguyen H.H., Byrom M., Ellington A.D. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One 2011, 6:e20299.
Melancon M.P., Zhou M., Zhang R., Xiong C., Allen P., Wen X., et al. Selective uptake and imaging of aptamer- and antibody-conjugated hollow nanospheres targeted to epidermal growth factor receptors overexpressed in head and neck cancer. ACS Nano 2014, 8:4530-4538.
Kim M.Y., Jeong S. In vitro selection of RNA aptamer and specific targeting of ErbB2 in breast cancer cells. Nucleic Acid Ther 2011, 21:173-178.
Varmira K., Hosseinimehr S.J., Noaparast Z., Abedi S.M. A HER2-targeted RNA aptamer molecule labeled with 99mTc for single-photon imaging in malignant tumors. Nucl Med Biol 2013, 40:980-986.
Varmira K., Hosseinimehr S.J., Noaparast Z., Abedi S.M. An improved radiolabelled RNA aptamer molecule for HER2 imaging in cancers. J Drug Target 2014, 22:116-122.
Bates P.J., Kahlon J.B., Thomas S.D., Trent J.O., Miller D.M. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J Biol Chem 1999, 274:26369-26377.
Bates P.J., Laber D.A., Miller D.M., Thomas S.D., Trent J.O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 2009, 86:151-164.
Haug A.R., Auernhammer C.J., Wängler B., Schmidt G.P., Uebleis C., Göke B., et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med 2010, 51:1349-1356.
Chi C., Du Y., Ye J., Kou D., Qiu J., Wang J., et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 2014, 4:1072-1084.
Potti A., Schilsky R.L., Nevins J.R. Refocusing the war on cancer: the critical role of personalized treatment. Sci Transl Med 2010, 2:28cm13.
Borg T. EAPM Report - Statement 2013.
Hamburg M.A., Collins F.S. The path to personalized medicine. N Engl J Med 2010, 363:301-304.
Vallance P., Levick M. Drug discovery and development in the age of molecular medicine. Clin Pharmacol Ther 2007, 82:363-366.
Luschtinetz F. Cyanine dyes as fluorescent probes in biomimetic and biological systems: fluorescence correlation spectroscopy and fluorescence anisotropy studies 2010.