Effects of void fraction and heat transfer correlations in a charge-sensitive ORC model – a comparison with experimental data

2017 • In *Proceedings of ECOS 2017*

Peer reviewed

ECOS_2017_RDickes_charge_inventory_submitedFinalVersion.pdf

Publisher postprint (1.1 MB)

All documents in ORBi are protected by a user license.

copy to clipboard copied

Keywords :

ORC; off-design; charge-sensitive; heat transfer; void fraction; correlations

Abstract :

[en] In order to properly evaluate the off-design performance of an ORC unit, it is important to use simulation tools that minimize the number of assumptions regarding the system state. To avoid imposing the condenser subcooling (or any other equivalent state variable), the ORC model should account for the mass repartition of working fluid through the unit in function of the operating conditions. Among the various components constituting ORC power systems, the proper modelling of the mass of working fluid enclosed in the heat exchangers is of primary importance. The goal of this work is to develop such a reliable charge-sensitive ORC model. To this end, a 2kWe recuperative ORC system is used as case study and experimental measurements are used as reference dataset. The ORC system features two brazed plate heat exchangers and one fin coil condenser. For these three heat exchangers, a large set of empirical correlations is investigated in order to evaluate both the fluids void fractions and their convective heat transfer coefficients. By comparing the models predictions with the experimental data, the study highlights the limitations of existing correlations and investigates three different correction methods to improve them. Ultimately, the analysis compares nine models of brazed plate heat exchangers, two models of condenser, three correction methods for improving the heat transfer correlations and four void fraction methods. Accounting for every combination possible, 288 different models of the ORC are compared for predicting both the heat exchangers thermal performance and the total mass enclosed in the ORC unit. Out of this study, the best modelling approach is identified and details of its charge inventory predictions are presented.

Disciplines :

Energy

Dickes, Rémi ^{}; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques

Guillaume, Ludovic ^{}; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques

Dumont, Olivier ^{}; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques

Quoilin, Sylvain ^{} ^{}; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques

Lemort, Vincent ^{} ^{}; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques

Language :

English

Title :

Effects of void fraction and heat transfer correlations in a charge-sensitive ORC model – a comparison with experimental data

Publication date :

02 July 2017

Event name :

ECOS 2017 - 30th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems

Event organizer :

San Diego State University

Event place :

San Diego, United States

Event date :

du 2 juillet 2017 au 6 juillet 2017

Audience :

International

Main work title :

Proceedings of ECOS 2017

Peer reviewed :

Peer reviewed

Funders :

F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]

Available on ORBi :

since 12 February 2018

Scopus citations^{®}

0

Scopus citations^{®}

without self-citations

without self-citations

0

- R. Dickes, O. Dumont, R. Daccord, S. Quoilin, and V. Lemort, “Modelling of organic Rankine cycle power systems in off-design conditions: an experimentally-validated comparative study,” Energy, 2017.
- R. Dickes, O. Dumont, A. Legros, S. Quoilin, and V. Lemort, “Analysis and comparison of different modeling approaches for the simulation of a micro-scale organic Rankine cycle power plant,” in Proceedings of ASME -ORC 2015, 2015.
- I. H. Bell, S. Quoilin, E. Georges, J. E. Braun, E. A. Groll, T. W. Horton, and V. Lemort, “A generalized moving-boundary algorithm to predict the heat transfer rate of counterflow heat exchangers for any phase configuration,” Appl. Therm. Eng., vol. 79, pp. 192–201, 2015.
- R. Dickes, D. Ziviani, M. de Paepe, M. van den Broek, S. Quoilin, and V. Lemort, “ORCmKit: an open-source library for organic Rankine cycle modelling and analysis,” in Proceedings of ECOS 2016, 2016.
- M. Farzad and D. L. O’Neal, “The effect of void fraction model on estimation of air conditioner system performance variables under a range of refrigerant charging conditions,” Int. J. Refrig., vol. 17, no. 2, pp. 85–93, 1994.
- C. K. Rice, “Effect of Void Fraction Correlation and Heat Flux Assumption on Refrigerant Charge Inventory Predictions.,” in ASHRAE Transactions, 1987, vol. 93, no. 1, pp. 341–367.
- C. Cuevas Barraza, “Contribution to the modelling of refrigeration systems,” University of Liège, 2006.
- R. Dickes, O. Dumont, S. Declaye, S. Quoilin, I. Bell, and V. Lemort, “Experimental investigation of an ORC system for a micro-solar power plant,” in Proceedings of the 22nd International Compressor Engineering at Purdue, 2014.
- Z. H. Ayub, “Plate Heat Exchanger Literature Survey and New Heat Transfer and Pressure Drop Correlations for Refrigerant Evaporators,” Heat Transf. Eng., vol. 24, no. 5, pp. 3–16, 2003.
- R. L. Amalfi, F. Vakili-Farahani, and J. R. Thome, “Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: Review and experimental database,” Int. J. Refrig., vol. 61, pp. 166–184, 2016.
- R. Eldeeb, V. Aute, and R. Radermacher, “A survey of correlations for heat transfer and pressure drop for evaporation and condensation in plate heat exchangers,” Int. J. Refrig., vol. 65, pp. 12–26, 2016.
- E. Macchi and M. Astolfi, Organic Rankine Cycle (ORC) Power Systems - Technologies and Applications. Woodhead Publishing, 2016.
- H. Martin, “A theoretical approach to predict the performance of chevron-type plate heat exchangers,” Chem. Eng. Process., vol. 35, no. 4, pp. 301–310, 1996.
- S. A. Wanniarachchi, U. Ratnam, B. E. Tilton, and K. Dutta-Roy, “Approximate correlations for chevron-type plate heat exchangers,” in Proceedings of the 30th National Heat Transfer Conference, 1995, pp. 145–151.
- R. L. Amalfi, F. Vakili-Farahani, and J. R. Thome, “Flow boiling and frictional pressure gradients in plate heat exchangers. Part 2: Comparison of literature methods to database and new prediction methods,” Int. J. Refrig., vol. 61, pp. 185–203, 2016.
- D.-H. Han, K.-J. Lee, and Y.-H. Kim, “Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations,” Appl. Therm. Eng., vol. 23, pp. 1209–1225, 2003.
- M. G. Cooper, “Heat flow rates in saturated nucleate pool boiling – a wide- ranging examination using reduced properties,” Adv. Heat Transf., vol. 16, pp. 157–239, 1984.
- G. A. Longo, G. Righetti, and C. Zilio, “A new computational procedure for refrigerant condensation inside herringbone-type Brazed Plate Heat Exchangers,” Int. J. Heat Mass Transf., vol. 82, pp. 530–536, 2015.
- D. H. Han, K. J. Lee, and Y. H. Kim, “The caracteristics of condensation in brazed plate heat exchangers with different chevron angles,” J. Korean Phys. Soc., vol. 43, no. 1, pp. 66–73, 2003.
- M. M. Shah, “A general correlation for heat transfer during film condensation inside pipes,” Int. J. Heat Mass Transf., vol. 22, no. 4, pp. 547–556, 1979.
- VDI Heat Atlas. Springer-Verlag Berlin Heidelberg.
- A. Cavallini, D. Del Col, L. Doretti, M. Matkovic, L. Rossetto, C. Zilio, and G. Censi, “Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design,” Heat Transf. Eng., vol. 27, no. 8, pp. 31–38, 2006.
- C. Wang, K. Chi, and C. Chang, “Heat transfer and friction characteristics of plain fin-and- tube heat exchangers, part II: Correlation,” vol. 43, pp. 2693–2700, 2000.
- R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, “An interior algorithm for nonlinear optimization that combines line search and trust region steps,” Math. Program., vol. 107, no. 3, pp. 391–408, 2006.
- S. M. Zivi, “Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production,” J. Heat Transfer, vol. 86, no. 2, pp. 247–251, 1964.
- R. W. Lockhart and R. C. Martinelli, “Proposed correlation of data for isothermal two-phase two-component flow in pipes.pdf,” Chem. Eng. Prog., vol. 45, no. 1, pp. 39–48, 1949.
- G. A. Hughmark, “Holdup and heat transfer in horizontal slug gas-liquid flow,” Chem. Eng. Sci., vol. 20, no. 12, pp. 1007–1010, 1965.
- M. Grodent, “Contribution à l’étude des composants de systèmes frigorifiques: modélisation en régime stationnaire et validation expérimentale. Application des modèles développés à l’étude d’un système ‘bisplit,’” University à Liège, 1998.