[en] Tillage practices affect soil organic carbon (SOC) pools, which in turn influence soil ecosystem processes. In this study we measured the effects of long-term conventional tillage (CT) and no-till (NT) practices on SOC and its fraction over the winter wheat growing season in surface and subsurface soils. Soil samples were taken during five physiological stages of winter wheat growth to a depth of 60 cm from the long-term (19 yr) experimental station on Loess Plateau in China. While the SOC content increased slowly in the surface soils during winter wheat growth with the NT treatment, it showed less fluctuation with the CT treatment. On average, NT treatment resulted in 82 and 53% higher SOC content in depth of 0 to 5 and 5 to 10 cm than CT treatment (P < 0.05). However, seasonal variations in microbial biomass carbon (MBC) and particulate organic carbon (POC) were similar under NT and CT, and showed maximum values in before-winter anthesis stage. The dissolved organic carbon (DOC) trend was highest before sowing, decreased before the winter and jointed stages, and increased again during the anthesis stage. Particulate organic carbon, MBC, and DOC were all significantly higher with NT than with CT in the upper 10 cm. Soil depth affected SOC and its fraction which decreased from surface to subsurface soil. The POC, MBC, and DOC were highly correlated with the SOC. This study demonstrated that measurements of the effect of tillage practices on SOC based on SOC fractions should include both seasonal changes and profile distribution.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Álvaro-Fuentes, J., M.V. López, C. Cantero-Martinez, and J.L. Arrúe. 2008. Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Sci. Soc. Am. J. 72:541-547. doi:10.2136/sssaj2007.0164
Amos, B., and D.T. Walters. 2006. Maize root biomass and net rhizodeposited carbon: An analysis of the literature. Soil Sci. Soc. Am. J. 70:1489-1503. doi:10.2136/sssaj2005.0216
Bardgett, R.D., R.D. Lovell, P.J. Hobbs, and S.C. Jarvis. 1999. Seasonal changes in soil microbial communities along a fertility gradient of temperature grasslands. Soil Biol. Biochem. 31:1021-1030. doi:10.1016/S0038-0717(99)00016-4
Baker, J.M., T.E. Ochsner, R.T. Venterea, and T.J. Griffis. 2007. Tillage and soil carbon sequestration-What do we really know? Agric. Ecosyst. Environ. 118:1-5. doi:10.1016/j.agee.2006.05.014
Bayat, H., S. Javanshir, N. Davatgar, and M. Neyshabouri. 2013. The effect of parameters of particle and aggregate size distribution on the point estimation of soil water retention curve. J. Soil Water Conserv. 20:27-49.
Blanco-Canqui, H., and R. Lal. 2008. No-tillage and soil-profile carbon sequestration: An on-farm Assessment. Soil Sci. Soc. Am. J. 72:693-701. doi:10.2136/sssaj2007.0233
Braim, M.A., K. Chaney, and D.R. Hodgson. 1992. Effects of simplified cultivation on the growth and yield of spring barley on a sandy loam soil: 2. Soil physical properties and root growth; root: Shoot relationships, inflow rates of nitrogen; water use. Soil Tillage Res. 22:173-187. doi:10.1016/0167-1987(92)90030-F
Cai, D.X., and X.B. Wang. 2002. Conservation tillage systems for spring maize in the semi-humid to arid areas of China. In: D.E. Stott, R.H. Mohttar, and G.C. Steinhardt, editors, Simulating the global farm-Selected papers from the 10th International Soil Conservation Organization Meeting, Purdue University, 24-29 May 1999. USDA-ARS Natl. Soil Erosion Res. Lab., West Lafayette, IN. p. 366-370.
Cambardella, C.A., and E.T. Elliott. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56:777-783. doi:10.2136/sssaj1992.03615995005600030017x
Chen, H., R. Hou, Y. Gong, H. Li, M. Fan, and Y. Kuzyakov. 2009. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res. 106:85-94. doi:10.1016/j.still.2009.09.009
Chen, H.Q., N. Billen, K. Stahr, and Y. Kuzyakov. 2007. Effects of nitrogen and intensive mixing on decomposition of 14C-labelled maize (Zea mays L.) residue in soils of different land use types. Soil Tillage Res. 96:114-123. doi:10.1016/j.still.2007.04.004
Dick, W.A. 1983. Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected by tillage intensity. Soil Sci. Soc. Am. J. 47:102-107. doi:10.2136/sssaj1983.03615995004700010021x
Dong, W., C. Hu, S. Chen, and Y. Zhang. 2009. Tillage and residue management effects on soil carbon and CO2 emission in a wheat-corn double-cropping system. Nutr. Cycling Agroecosyst. 83:27-37. doi:10.1007/s10705-008-9195-x
Dou, F., A.L. Wright, and F.M. Hons. 2008. Sensitivity of labile soil organic carbon to tillage in wheat-based cropping systems. Soil Sci. Soc. Am. J. 72:1445-1453. doi:10.2136/sssaj2007.0230
Food and Agriculture Organization and UNESCO. 1988. Soil map of the world. UNESCO, Paris.
Fontaine, S., S. Barot, P. Barre, N. Bdioui, B. Mary, and C. Rumpel. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277-280. doi:10.1038/nature06275
Franchini, J.C., C.C. Crispino, R.A. Souza, E. Torres, and M. Hungria. 2007. Microbiological parameters as indicators of soil quality under various tillage and crop-rotation systems in southern Brazil. Soil Tillage Res. 92:18-29. doi:10.1016/j.still.2005.12.010
Franzluebbers, A., F.M. Hons, and D.A. Zuberer. 1994. Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems. Soil Biol. Biochem. 26:1469-1475. doi:10.1016/0038-0717(94)90086-8
Franzluebbers, A.J., F.M. Hons, and D.A. Zuberer. 1995. Soil organic carbon, microbial biomass, and mineralizable carbon and nitrogen in sorghum. Soil Sci. Soc. Am. J. 59:460-466. doi:10.2136/sssaj1995.03615995005900020027x
Fuentes, M., G.B. Bram, C. Hidalgo, J. Etchevers, I. González-Martín, J.M. Hernández-Hierro, K.D. Sayre, and L. Dendooven. 2010. Organic carbon and stable 13C isotope in conservation agriculture and conventional systems. Soil Biol. Biochem. 42:551-557. doi:10.1016/j.soilbio.2009.11.020
Gao, H.W., H.W. Li, and J.D. Chen. 1999. Research on sustainable mechanized dryland farming. (In Chinese.) Agr. Res. Arid. Area. 1:57-62.
Gregory, P.J. 2006. Roots, rhizosphere and soil: The route to a better understanding of soil science? Eur. J. Soil Biol. 57:2-12. doi:10.1111/j.1365-2389.2005.00778.x
Haynes, R.J. 2000. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biol. Biochem. 32:211-219. doi:10.1016/S0038-0717(99)00148-0
Haynes, R.J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 85:221-268. doi:10.1016/S0065-2113(04)85005-3
He, J., H.W. Li, R.G. Rasaily, Q.J. Wang, G.H. Cai, Y.B. Su, X.D. Qiao, and L.J. Liu. 2011. Soil properties and crop yields after 11 years of no tillage farming in wheat-maize cropping system in North China Plain. Soil Tillage Res. 113:48-54. doi:10.1016/j.still.2011.01.005
He, Z.L., J. Wu, A.G. O'Donnell, and J.K. Syers. 1997. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biol. Fertil. Soils 24:421-428. doi:10.1007/s003740050267
Hungria, M., J.C. Franchini, O. Brandão-Junior, G. Kaschuk, and R.A. Souza. 2009. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Appl. Soil Ecol. 42:288-296. doi:10.1016/j.apsoil.2009.05.005
Jiang, P.K., Q.F. Xu, Z.H. Xu, and Z.H. Cao. 2006. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. For. Ecol. Manage. 236:30-36. doi:10.1016/j.foreco.2006.06.010
Kaiser, K. 2001. Dissolved organic phosphorus and sulphur as influenced by sorptive interactions with mineral subsoil horizons. Eur. J. Soil Sci. 52:489-493. doi:10.1046/j.1365-2389.2001.00396.x
Lal, R. 1997. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil Tillage Res. 43:81-107. doi:10.1016/S0167-1987(97)00036-6
Li, H.W., H.W. Gao, H.D. Wu, W.Y. Li, X.Y. Wang, and J. He. 2007. Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Aust. J. Soil Res. 45:344-350. doi:10.1071/SR07003
Liang, B., X. Yang, X. He, and J. Zhou. 2011. Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biol. Fertil. Soils 47:121-128. doi:10.1007/s00374-010-0511-7
Liu, E.K., S.G. Teclemariam, C.R. Yan, J.M. Yu, R.S. Gu, S. Liu, W.Q. He, and Q. Liu. 2014. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma 213:379-384. doi:10.1016/j.geoderma.2013.08.021
Logsdon, S.D., and D.L. Karlen. 2004. Bulk density as a soil quality indicator during conversion to no-tillage. Soil Tillage Res. 78:143-149. doi:10.1016/j.still.2004.02.003
Lorenz, K., and R. Lal. 2005. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv. Agron. 88:35-66. doi:10.1016/S0065-2113(05)88002-2
Lu, R.K. 2000. Chemical analysis method of agricultural soil. (In Chinese.) China Agric. Technol. Press, Beijing.
Lu, C.H., M.K. van Ittersumb, and R. Rabbinge. 2004. A scenario exploration of strategic land use options for the Loess Plateau in northern China. Agric. Syst. 79:145-170. doi:10.1016/S0308-521X(03)00069-6
Madejón, E., F. Moreno, J.M. Murillo, and F. Pelegrín. 2007. Soil biochemical response to long-term conservation tillage under semi-arid Mediterranean conditions. Soil Tillage Res. 94:346-352. doi:10.1016/j.still.2006.08.010
Mandal, A., A.K. Patra, D. Singh, A. Swarup, and R. Ebhin Masto. 2007. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 98:3585-3592. doi:10.1016/j.biortech.2006.11.027
Melero, S., R. López-Garrido, E. Madejón, J.M. Murillo, K. Vanderlinden, R. Ordóňez, and F. Moreno. 2009. Long-term effects of conservation tillage on organic fractions in two soils in southwest of Spain. Agric. Ecosyst. Environ. 133:68-74. doi:10.1016/j.agee.2009.05.004
Melero, S., K. Vanderlinden, J.C. Ruiz, and E. Madejón. 2008. Long-term effect on soil biochemical status of a Vertisol under conservation tillage system in semi-arid Mediterranean conditions. Eur. J. Soil Biol. 44:437-442. doi:10.1016/j.ejsobi.2008.06.003
Munkholm, L.J., R.J. Heck, and B. Deen. 2013. Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res. 127:85-91. doi:10.1016/j.still.2012.02.007
Rasool, R., S.S. Kukal, and G.S. Hira. 2008. Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maizewheat system. Soil Tillage Res. 101:31-36. doi:10.1016/j.still.2008.05.015
Rumpel, C., and I. Kögel-Knabner. 2011. Deep soil organic matter-A key but poorly understood component of terrestrial C cycle. Plant Soil 338:143-158. doi:10.1007/s11104-010-0391-5
Spedding, T.A., C. Hamel, G.R. Mehuys, and C.A. Madramootoo. 2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol. Biochem. 36:499-512. doi:10.1016/j.soilbio.2003.10.026
Teclemariam, S.G. 2012. Effect of no-tillage on soil organic carbon and nitrogen and their pools in rainfed agriculture of northern China. Grad. Sch. of Chin. Acad. of Agric. Sci., Beijing
Tian, J., S. Lu, M. Fan, X. Li, and Y. Kuzyakov. 2013. Labile soil organic matter fractions as influenced by non-flooded mulching cultivation and cropping season in rice-wheat rotation. Eur. J. Soil Biol. 56:19-25. doi:10.1016/j. ejsobi.2013.02.001
Van den Berg, L.J.L., L. Shotbolt, and M.R. Ashmore. 2012. Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality. Sci. Total Environ. 427-428:269-276. doi:10.1016/j.scitotenv.2012.03.069
Van Oost, K., G. Govers, S. De Alba, and T.A. Quine. 2006. Tillage erosion: A review of controlling factors and implications for soil quality. Prog. Phys. Geogr. 30:443-466. doi:10.1191/0309133306pp487ra
Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19:703-707. doi:10.1016/0038-0717(87)90052-6
Wang, Q., and S. Wang. 2011. Response of labile soil organic matter to changes in forest vegetation in subtropical regions. Appl. Soil Ecol. 47:210-216. doi:10.1016/j.apsoil.2010.12.004
Wang, Q., Y. Bai, H. Gao, J. He, H. Chen, R.C. Chesney, N.J. Kuhn, and H.W. Li. 2008. Soil chemical properties and microbial biomass after 16 years of no-tillage farming on the Loess Plateau, China. Geoderma 144:502-508. doi:10.1016/j.geoderma.2008.01.003
Wang, X.B., D.X. Cai, U.D. Perdok, W.B. Hoogmoed, and O. Oenema. 2007. Development in conservation tillage in rainfed regions of North China. Soil Tillage Res. 93:239-250. doi:10.1016/j.still.2006.05.005
Wang, X.B., H.J. Wu, K. Dai, D.C. Zhang, Z.H. Feng, Q.S. Zhao, X.P. Wu, K. Jin, D.X. Cai, O. Oenema, and W.B. Hoogmoed. 2012. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Res. 132:106-116. doi:10.1016/j.fcr.2011.09.012
West, T.O., and W.M. Post. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 66:1930-1946. doi:10.2136/sssaj2002.1930
Wu, T.Y., J.J. Schoenau, F.M. Li, P.Y. Qian, and S.S. Malhi. 2003. Influence of cultivation on organic carbon in three typical soils of China Loess Plateau and Canada Prairies. (In Chinese.) Chin. J. Appl. Ecol. 14:2213-2218 .
Yoo, G., and M.M. Wander. 2008. Tillage effects on aggregate turnover and sequestration of particulate and humified soil organic carbon. Soil Sci. Soc. Am. J. 72:670-676. doi:10.2136/sssaj2007.0110
Zhang, J.S., J.F. Guo, G.S. Chen, and W. Qian. 2005. Concentrations and seasonal dynamics of dissolved organic carbon in forest floors of two plantations (Castanopsis kawakamii and Cunninghamia lanceolata) in subtropical China. J. For. Res. 16:205-208. doi:10.1007/BF02856815
Zhang, B., H.B. He, X.L. Ding, X.D. Zhang, X.P. Zhang, X.M. Yang, and T.R. Filley. 2012. Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional- and no-tillage practices in a rainfed agroecosystem. Soil Tillage Res. 124:153-160. doi:10.1016/j. still.2012.05.011
Zhou, G.M., J.M. Xu, and P.K. Jiang. 2006. Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations. Pedosphere 16:525-531. doi:10.1016/S1002-0160(06)60084-2
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.