Grant, S. F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38, 320-323, doi:10. 1038/ng1732 (2006).
Rulifson, I. C. et al. Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci USA 104, 6247-6252, doi:10. 1073/ pnas. 0701509104 (2007).
Columbus, J. et al. Insulin treatment and high-fat diet feeding reduces the expression of three Tcf genes in rodent pancreas. J Endocrinol 207, 77-86, doi:10. 1677/JOE-10-0044 (2010).
Florez, J. C. et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 355, 241-250, doi:10. 1056/NEJMoa062418 (2006).
Lyssenko, V. et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117, 2155-2163, doi:10. 1172/JCI30706 (2007).
Schafer, S. A. et al. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 50, 2443-2450, doi:10. 1007/s00125-007-0753-6 (2007).
Kirchhoff, K. et al. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51, 597-601, doi:10. 1007/s00125-008-0926-y (2008).
Jin, T. & Liu, L. The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol 22, 2383-2392, doi:10. 1210/me. 2008-0135 (2008).
Liu, Z. & Habener, J. F. Wnt signaling in pancreatic islets. Adv Exp Med Biol 654, 391-419, doi:10. 1007/978-90-481-3271-3-17 (2010).
Krutzfeldt, J. & Stoffel, M. Regulation of wingless-type MMTV integration site family (WNT) signalling in pancreatic islets from wild-type and obese mice. Diabetologia 53, 123-127, doi:10. 1007/s00125-009-1578-2 (2010).
Boj, S. F. et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151, 1595-1607, doi:10. 1016/j. cell. 2012. 10. 053 (2012).
Shu, L. et al. Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes 57, 645-653, doi:10. 2337/db07-0847 (2008).
Shu, L. et al. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP-and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet 18, 2388-2399, doi:10. 1093/hmg/ddp178 (2009).
da Silva Xavier, G. et al. Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2-null mice. Diabetologia 55, 2667-2676, doi:10. 1007/s00125-012-2600-7 (2012).
Shao, W. et al. The expression of dominant negative TCF7L2 in pancreatic beta cells during the embryonic stage causes impaired glucose homeostasis. Mol Metab 4, 344-352, doi:10. 1016/j. molmet. 2015. 01. 008 (2015).
Mitchell, R. K. et al. Selective disruption of Tcf7l2 in the pancreatic beta cell impairs secretory function and lowers beta cell mass. Hum Mol Genet 24, 1390-1399, doi:10. 1093/hmg/ddu553 (2015).
McCarthy, M. I., Rorsman, P. & Gloyn, A. L. TCF7L2 and diabetes: a tale of two tissues, and of two species. Cell Metab 17, 157-159, doi:10. 1016/j. cmet. 2013. 01. 011 (2013).
Muncan, V. et al. T-cell factor 4 (Tcf7l2) maintains proliferative compartments in zebrafish intestine. EMBO Rep 8, 966-973, doi:10. 1038/sj. embor. 7401071 (2007).
Eames, S. C., Philipson, L. H., Prince, V. E. & Kinkel, M. D. Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis. Zebrafish 7, 205-213, doi:10. 1089/zeb. 2009. 0640 (2010).
Gleeson, M., Connaughton, V. & Arneson, L. S. Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol 44, 157-163, doi:10. 1007/s00592-007-0257-3 (2007).
Zang, L., Shimada, Y., Nishimura, Y., Tanaka, T. & Nishimura, N. Repeated Blood Collection for Blood Tests in Adult Zebrafish. J Vis Exp, e53272, doi:10. 3791/53272 (2015).
Curado, S. et al. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236, 1025-1035, doi:10. 1002/dvdy. 21100 (2007).
Field, H. A., Dong, P. D., Beis, D. & Stainier, D. Y. Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev Biol 261, 197-208 (2003).
Zecchin, E. et al. Distinct delta and jagged genes control sequential segregation of pancreatic cell types from precursor pools in zebrafish. Dev Biol 301, 192-204, doi:10. 1016/j. ydbio. 2006. 09. 041 (2007).
Moro, E. et al. In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev Biol 366, 327-340, doi:10. 1016/j. ydbio. 2012. 03. 023 (2012).
Tarifeno-Saldivia, E. et al. Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biol 15, 21, doi:10. 1186/s12915-017-0362-x (2017).
Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248, 307-318 (2002).
Hardt, P. D. & Ewald, N. Exocrine pancreatic insufficiency in diabetes mellitus: a complication of diabetic neuropathy or a different type of diabetes? Exp Diabetes Res 2011, 761950, doi:10. 1155/2011/761950 (2011).
Dejana, E. The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 107, 943-952, doi:10. 1161/ CIRCRESAHA. 110. 223750 (2010).
Lammert, E. et al. Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 13, 1070-1074 (2003).
Gore, A. V., Monzo, K., Cha, Y. R., Pan, W. & Weinstein, B. M. Vascular development in the zebrafish. Cold Spring Harb Perspect Med 2, a006684, doi:10. 1101/cshperspect. a006684 (2012).
Li, S. et al. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation. Toxicol Appl Pharmacol 280, 408-420, doi:10. 1016/j. taap. 2014. 09. 005 (2014).
Poss, K. D. et al. Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 222, 347-358, doi:10. 1006/dbio. 2000. 9722 (2000).
Munoz, J. et al. Polymorphism in the transcription factor 7-like 2 (TCF7L2) gene is associated with reduced insulin secretion in nondiabetic women. Diabetes 55, 3630-3634, doi:10. 2337/db06-0574 (2006).
Hansson, O., Zhou, Y., Renstrom, E. & Osmark, P. Molecular function of TCF7L2: Consequences of TCF7L2 splicing for molecular function and risk for type 2 diabetes. Curr Diab Rep 10, 444-451, doi:10. 1007/s11892-010-0149-8 (2010).
Yi, F., Brubaker, P. L. & Jin, T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 280, 1457-1464, doi:10. 1074/jbc. M411487200 (2005).
Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19, 379-383, doi:10. 1038/1270 (1998).
Gregorieff, A., Grosschedl, R. & Clevers, H. Hindgut defects and transformation of the gastro-intestinal tract in Tcf4(?/?)/ Tcf1(?/?) embryos. EMBO J 23, 1825-1833, doi:10. 1038/sj. emboj. 7600191 (2004).
Kulkarni, R. N. et al. PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J Clin Invest 114, 828-836, doi:10. 1172/JCI21845 (2004).
Pisharath, H., Rhee, J. M., Swanson, M. A., Leach, S. D. & Parsons, M. J. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 124, 218-229, doi:10. 1016/j. mod. 2006. 11. 005 (2007).
Eberhard, D., Kragl, M. & Lammert, E. 'Giving and taking': endothelial and beta-cells in the islets of Langerhans. Trends Endocrinol Metab 21, 457-463, doi:10. 1016/j. tem. 2010. 03. 003 (2010).
Richards, O. C., Raines, S. M. & Attie, A. D. The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action. Endocr Rev 31, 343-363, doi:10. 1210/er. 2009-0035 (2010).
Calderari, S. et al. Angiopoietin 2 alters pancreatic vascularization in diabetic conditions. PLoS One 7, e29438, doi:10. 1371/journal. pone. 0029438 (2012).
Czako, L., Hegyi, P., Rakonczay, Z. Jr., Wittmann, T. & Otsuki, M. Interactions between the endocrine and exocrine pancreas and their clinical relevance. Pancreatology 9, 351-359, doi:10. 1159/000181169 (2009).
Nobrega, M. A. TCF7L2 and glucose metabolism: time to look beyond the pancreas. Diabetes 62, 706-708, doi:10. 2337/db12-1418 (2013).
Dessimoz, J., Bonnard, C., Huelsken, J. & Grapin-Botton, A. Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr Biol 15, 1677-1683, doi:10. 1016/j. cub. 2005. 08. 037 (2005).
Murtaugh, L. C., Law, A. C., Dor, Y. & Melton, D. A. Beta-catenin is essential for pancreatic acinar but not islet development. Development 132, 4663-4674, doi:10. 1242/dev. 02063 (2005).
Papadopoulou, S. & Edlund, H. Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function. Diabetes 54, 2844-2851 (2005).
Heiser, P. W., Lau, J., Taketo, M. M., Herrera, P. L. & Hebrok, M. Stabilization of beta-catenin impacts pancreas growth. Development 133, 2023-2032, doi:10. 1242/dev. 02366 (2006).
Heller, R. S. et al. Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Dev Dyn 225, 260-270, doi:10. 1002/dvdy. 10157 (2002).
Heller, R. S. et al. Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas. Gene Expr 11, 141-147 (2003).
Pedersen, A. H. & Heller, R. S. A possible role for the canonical Wnt pathway in endocrine cell development in chicks. Biochem Biophys Res Commun 333, 961-968, doi:10. 1016/j. bbrc. 2005. 05. 189 (2005).
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310, doi:10. 1002/aja. 1002030302 (1995).
Wang, Y. et al. Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137, 3119-3128, doi:10. 1242/dev. 048785 (2010).
Moro, E., Gnugge, L., Braghetta, P., Bortolussi, M. & Argenton, F. Analysis of beta cell proliferation dynamics in zebrafish. Dev Biol 332, 299-308, doi:10. 1016/j. ydbio. 2009. 05. 576 (2009).
Schmitner, N., Kohno, K. & Meyer, D. Ptf1a+, ela3l-cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae. Dis Model Mech. doi:10. 1242/dmm. 026633 (2017).
Curado, S., Stainier, D. Y. & Anderson, R. M. Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc 3, 948-954, doi:10. 1038/ nprot. 2008. 58 (2008).
Li, Z., Wen, C., Peng, J., Korzh, V. & Gong, Z. Generation of living color transgenic zebrafish to trace somatostatin-expressing cells and endocrine pancreas organization. Differentiation 77, 128-134, doi:10. 1016/j. diff. 2008. 09. 014 (2009).
Godinho, L. et al. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development 132, 5069-5079, doi:10. 1242/dev. 02075 (2005).
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562-578, doi:10. 1038/nprot. 2012. 016 (2012).
Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169, doi:10. 1093/bioinformatics/btu638 (2015).
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol 11, R106, doi:10. 1186/gb-2010-11-10-r106 (2010).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biol 15, 550, doi:10. 1186/s13059-014-0550-8 (2014).
Thisse, C., Thisse, B., Schilling, T. F. & Postlethwait, J. H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203-1215 (1993).
Argenton, F., Zecchin, E. & Bortolussi, M. Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech Dev 87, 217-221 (1999).
Facchinello, N., Schiavone, M., Vettori, A., Argenton, F. & Tiso, N. Monitoring Wnt Signaling in Zebrafish Using Fluorescent Biosensors. Methods Mol Biol 1481, 81-94, doi:10. 1007/978-1-4939-6393-5-9 (2016).
Chunming, L., C.-Y., Kao., Gore, J. C. & Zhaohua, D. In Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on (2007).
Hassouna, M. S. & Farag, A. A. Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains. IEEE Trans Pattern Anal Mach Intell 29, 1563-1574, doi:10. 1109/TPAMI. 2007. 1154 (2007).
Van Uitert, R. & Bitter, I. Subvoxel precise skeletons of volumetric data based on fast marching methods. Med Phys 34, 627-638 (2007).
Mahler, J., Filippi, A. & Driever, W. DeltaA/DeltaD regulate multiple and temporally distinct phases of notch signaling during dopaminergic neurogenesis in zebrafish. J Neurosci 30, 16621-16635, doi:10. 1523/JNEUROSCI. 4769-10. 2010 (2010).
Hesselson, D., Anderson, R. M., Beinat, M. & Stainier, D. Y. Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling. Proc Natl Acad Sci USA 106, 14896-14901, doi:10. 1073/pnas. 0906348106 (2009).
Thummel, R. et al. Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dyn 235, 336-346, doi:10. 1002/dvdy. 20630 (2006).
Zancan, I. et al. Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/beta-catenin signaling. Hum Mol Genet 24, 1280-1294, doi:10. 1093/hmg/ddu538 (2015).
Dunn, O. J. Multiple Comparisons Among Means. Journal of the American Statistical Association 56, 52-64 (1961).
S., H. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65-70 (1979).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289-300 (1995).