[en] We show that the Kapitza stabilization can occur in the context of nonlinear quantum fields. Through this phenomenon, an amplitude-modulated lattice can stabilize a Bose–Einstein condensate with repulsive interactions and prevent the spreading for long times. We present a classical and quantum analysis in the framework of Gross-Pitaevskii equation, specifying the parameter region where stabilization occurs. Effects of nonlinearity lead to a significant increase of the stability domain compared with the classical case. Our proposal can be experimentally implemented with current cold atom settings.
Disciplines :
Physics
Author, co-author :
Martin, John ; Université de Liège - ULiège > Département de physique > Optique quantique
Georgeot, Bertrand; Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, France
Guéry-Odelin, David; Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université de Toulouse, CNRS, UPS, France
Shepelyansky, Dima; Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, France
Language :
English
Title :
Kapitza stabilization of a repulsive Bose-Einstein condensate in an oscillating optical lattice
Publication date :
05 February 2018
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society, United States - Maryland
Volume :
97
Pages :
023607
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
P. L. Kapitza, Dynamic stability of the pendulum with vibrating suspension point, Sov. Phys. JETP 21, 588 (1951) (in Russian).
P. L. Kapitza, A pendulum with oscillating suspension, Usp. Fiz. Nauk 44, 7 (1951). UFNAAG 0042-1294 10.3367/UFNr.0044.195105b.0007
L. D. Landau and E. M. Lifshitz, Mechanics (Nauka, Moscow, 1988).
V. S. Bagnato, N. P. Bigelow, G. I. Surdutovich, and S. C. Zilio, Dynamical stabilization: A new model for supermolasses, Opt. Lett. 19, 1568 (1994). OPLEDP 0146-9592 10.1364/OL.19.001568
B. T. Torosov, G. Della Valle, and S. Longhi, Imaginary Kapitza pendulum, Phys. Rev. A 88, 052106 (2013). PLRAAN 1050-2947 10.1103/PhysRevA.88.052106
O. Smirnova, M. Spanner, and M. Ivanov, Molecule without Electrons: Binging Bare Nuclei with Strong Laser Fields, Phys. Rev. Lett. 90, 243001 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.90.243001
I. Gilary, N. Moiseyev, S. Rahav, and S. Fishman, Trapping of particles by lasers: The quantum Kapitza pendulum, J. Phys. A: Math. Gen. 36, L409 (2003). JPHAC5 0305-4470 10.1088/0305-4470/36/25/101
F. K. Abdullaev, J. G. Caputo, R. A. Kraenkel, and B. A. Malomed, Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length, Phys. Rev. A 67, 013605 (2003). PLRAAN 1050-2947 10.1103/PhysRevA.67.013605
R. Citro, E. G. Dalla Torre, L. D'Alessio, A. Polkovnikov, M. Babadi, T. Oka, and E. Demler, Dynamical stability of a many-body Kapitza pendulum, Ann. Phys. (NY) 360, 694 (2015). APNYA6 0003-4916 10.1016/j.aop.2015.03.027
N. S. Voronova, A. A. Elistarov, and Yu. E. Lozovik, Inverted pendulum state of a polariton Rabi oscillator, Phys. Rev. B 94, 045413 (2016). 2469-9950 10.1103/PhysRevB.94.045413
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999). RMPHAT 0034-6861 10.1103/RevModPhys.71.463
W. Paul, Electromagnetic traps for charged and neutral particles, Rev. Mod. Phys. 62, 531 (1990). RMPHAT 0034-6861 10.1103/RevModPhys.62.531
A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics (Springer, Berlin 1992).
B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep. 52, 263 (1979). PRPLCM 0370-1573 10.1016/0370-1573(79)90023-1
D. Shepelyansky, Chirikov criterion, Scholarpedia 4, 8567 (2009). 10.4249/scholarpedia.8567
A. Fortun, C. Cabrera-Gutiérrez, G. Condon, E. Michon, J. Billy, and D. Guéry-Odelin, Direct Tunneling Delay Time Measurement in an Optical Lattice, Phys. Rev. Lett. 117, 010401 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.117.010401
M. Olshanii, Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons, Phys. Rev. Lett. 81, 938 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.81.938
D. S. Petrov, D. M. Gangardt, and G. V. Shlyapnikov, Low-dimensional trapped gases, J. Phys. IV 116, 5 (2004). JPICEI 1155-4339 10.1051/jp4:2004116001
A. D. Jackson, G. M. Kavoulakis, and C. J. Pethick, Solitary waves in clouds of Bose-Einstein condensed atoms, Phys. Rev. A 58, 2417 (1998). PLRAAN 1050-2947 10.1103/PhysRevA.58.2417
G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5, 506 (1968). SJNAEQ 0036-1429 10.1137/0705041
S. V. Rajagopal, K. M. Fujiwara, R. Senaratne, K. Singh, Z. A. Geiger, and D. M. Weld, Quantum emulation of extreme non-equilibrium phenomena with trapped atoms, Ann. Phys. (Berlin, Ger.) 529, 1700008 (2017). ANPYA2 0003-3804 10.1002/andp.201700008