[en] Two new Juno-observed particle features of Jupiter's main aurora demonstrate substantial diversity of processes generating Jupiter's mysterious auroral emissions. It was previously speculated that sometimes-observed potential-driven aurora (up to 400 kV) can turn into broadband stochastic acceleration (dominating at Jupiter) by means of instability. Here direct evidence for such a process is revealed with a “mono-energetic” electron inverted-V rising in energy to 200 keV, transforming into a region of broadband acceleration with downward energy fluxes tripling to 3000 mW/m2, and then transforming back into a mono-energetic structure ramping down from 200 keV. But a second feature of interest observed nearby is unlikely to have operated in the same way. Here a downward accelerated proton inverted-V, with inferred potentials to 300-400 kV, occurred simultaneously with downward accelerated broadband electrons with downward energy fluxes as high as any observed (~3000 mW/m2). This latter feature has no known precedent with Earth auroral observations.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Mauk, B. H.
Haggerty, D. K.
Paranicas, C. P.
Clark, G.
Kollmann, P.
Rymer, A. M.
Peachey, J. M.
Bolton, S. J.
Levin, S. M.
Adriani, A.
Allegrini, F.
Bagenal, F.
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adriani, A., Filacchione, G., di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. (2017). JIRAM, the Jovian Infrared Auroral Mapper. Space Science Reviews, 213(1-4), 393–446. https://doi.org/10.1007/s11214-014-0094-y
Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., et al. (2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 44, 7131–7139. https://doi.org/10.1002/2017GL073180
Amm, O., Birn, J., Bonnell, J., Borovsky, J. E., Carbary, J. F., Carlson, C. W., et al. (2002). Chapter 4-In situ measurements in the auroral plasma. Space Science Reviews, 103(1/4), 93–208. https://doi.org/10.1023/A:1023082700768
Arnoldy, R. L. (1981). Review of auroral particle precipitation. In S.-I. Akasofu & J. R. Kan (Eds.), Physics of Auroral Arc Formation, Geophysical Monograph Series, (Vol. 25, p. 56). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM025
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2014). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1-4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Bolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., et al. (2017). Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 356(6340), 821–825. https://doi.org/10.1126/science.aal2108
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno mission. Space Science Reviews, 213(1-4), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., et al. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 44, 4463–4471. https://doi.org/10.1002/2017GL073114
Clark, G., Mauk, B. H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A., et al. (2017). Energetic particle signatures of magnetic field-aligned potentials over Jupiter's polar regions. Geophysical Research Letters, 44, 8703–8711. https://doi.org/10.1002/2017GL074366
Clark, G., Mauk, B. H., Paranicas, C., Haggerty, D., Kollmann, P., Rymer, A., et al. (2017). Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere. Geophysical Research Letters, 44, 4419–4425. https://doi.org/10.1002/2016GL072325
Connerney, J. E. P., Acuña, M. H., Ness, N. F., & Satoh, T. (1998). New models of Jupiter's magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 103(A6), 11,929–11,939. https://doi.org/10.1029/97JA03726
Connerney, J. E. P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., et al. (2017). Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 356(6340), 826–832. https://doi.org/10.1126/science.aam5928
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1-4), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213(1-4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Hess, S. L. G., Bonfond, B., Zarka, P., & Grodent, D. (2011). Model of the Jovian magnetic field topology constrained by the Io auroral emissions. Journal of Geophysical Research, 116, A05217. https://doi.org/10.1029/2010JA016262
Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison, W. T., et al. (2017). The Juno Waves investigation. Space Science Reviews, 213(1-4), 347–392. https://doi.org/10.1007/s11214-017-0396-y
Mauk, B. H. (2015). Comparative investigation of the energetic ion spectra comprising the magnetospheric ring currents of the solar system. Journal of Geophysical Research: Space Physics, 119, 9729–9746. https://doi.org/10.1002/2014JA020392
Mauk, B. H., & Fox, N. J. (2010). Electron radiation belts of the solar system. Journal of Geophysical Research, 115, A12220. https://doi.org/10.1029/2010JA015660
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E., Cooper, S. A., et al. (2017). The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno mission. Space Science Reviews, 213(1-4), 289–346. https://doi.org/10.1007/s11214-013-0025-3
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017a). Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 549(7670), 66–69. https://doi.org/10.1038/nature23648
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017b). Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 44, 4410–4418. https://doi.org/10.1002/2016GL072286
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., et al. (2017). The Jovian Auroral Distributions Experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213(1-4), 547–643. https://doi.org/10.1007/s11214-013-9990-9
Paranicas, C., Mauk, B. H., Haggerty, D. K., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017). Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3. Geophysical Research Letters, 44, 4426–4431. https://doi.org/10.1002/2017GL072600
Paschmann, G., Haaland, S., & Treumann, R. (2003). In situ measurements in the auroral plasma, Chapter 4 in Auroral Plasma Physics, Space Sciences Series of ISSI (International Space Sciences Institute)(Vol. 15, pp. 93–208). AIP-Press. https://doi.org/10.1007/978-94-007-1086-3
Strangeway, R. J., Kepko, L., Elphic, R. C., Carlson, C. W., Ergun, R. E., McFadden, J. P., et al. (1998). FAST observations of VLF waves in the auroral zone: Evidence of very low plasma densities. Geophysical Research Letters, 25(12), 2065–2068. https://doi.org/10.1029/98GL00664
Zombeck, M. V. (2007). Handbook of Space and astrophysics (3rd ed.). Cambridge, UK: Cambridge University Press.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.