Hands SL, Wyttenbach A. Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol. 2010;120:419-37.
Ross CA. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron. 2002;35:819-22.
Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci. 2000;23:217-47.
Penney JB, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH. CAG repeat number governs the development rate of pathology in Huntington's disease. Ann Neurol. 1997;41:689-92.
Scarafone N, Pain C, Fratamico A, Gaspard G, Yilmaz N, Filée P, et al. Amyloid-like fibril formation by PolyQ proteins: a critical balance between the PolyQ length and the constraints imposed by the host protein. PLoS One. 2012;7:e31253.
Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90:537-48.
Sánchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature. 2003;421:373-9.
Williams AJ, Paulson HL. Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci. 2008;31:521-8.
Ross CA. Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron. 1997;19:1147-50.
Bhattacharyya A, Thakur AK, Chellgren VM, Thiagarajan G, Williams AD, Chellgren BW, et al. Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol. 2006;355:524-35.
Robertson AL, Bottomley SP. Towards the treatment of polyglutamine diseases: the modulatory role of protein context. Curr Med Chem. 2010;17:3058-68.
Menon RP, Soong D, de Chiara C, Holt M, McCormick JE, Anilkumar N, et al. Mapping the self-association domains of ataxin-1: identification of novel non overlapping motifs. PeerJ. 2014;2:e323.
Ellisdon AM, Thomas B, Bottomley SP. The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J Biol Chem. 2006;281:16888-96.
Robertson AL, Bate MA, Buckle AM, Bottomley SP. The rate of polyQ-mediated aggregation is dramatically affected by the number and location of surrounding domains. J Mol Biol. 2011;413:879-87.
Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon I-JL, et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol. 2009;16:380-9.
Huynen C, Filée P, Matagne A, Galleni M, Dumoulin M. Class A β -Lactamases as versatile scaffolds to create hybrid enzymes: applications from basic research to medicine. Biomed Res Int. 2013;2013;1-16.
Huynen C, Willet N, Buell AK, Duwez A-S, Jerôme C, Dumoulin M. Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils. Biochim Biophys Acta. 1854;2015:239-48.
Kenyon CJ. The genetics of ageing. Nature. 2010;464:504-12.
David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. Widespread protein aggregation as an inherent part of aging in C. Elegans. PLoS Biol. 2010;8:e1000450.
Van Assche R, Broeckx V, Boonen K, Maes E, De Haes W, Schoofs L, et al. Integrating -Omics: systems biology as explored through C. Elegans research. J Mol Biol. 2015;427:3441-51.
Regitz C, Fitzenberger E, Mahn FL, Dußling LM, Wenzel U. Resveratrol reduces amyloid-beta (Aβ1-42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis Elegans. Eur J Nutr. 2015.
Regitz C, Dußling LM, Wenzel U. Amyloid-beta (Aβ(1-42))-induced paralysis in Caenorhabditis Elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res. 2014;58:1931-40.
Van Assche R, Temmerman L, Dias DA, Boughton B, Boonen K, Braeckman BP, et al. Metabolic profiling of a transgenic Caenorhabditis Elegans Alzheimer model. Metabolomics. 2014;11:477-86.
Brignull HR, Morley JF, Garcia SM, Morimoto RI. Modeling polyglutamine pathogenesis in C. Elegans. Methods Enzymol. 2006;412:256-82.
Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD. Neurodegeneration and defective neurotransmission in a Caenorhabditis Elegans model of tauopathy. Proc Natl Acad Sci U S A. 2003;100:9980-5.
Liu J, Banskota AH, Critchley AT, Hafting J, Prithiviraj B. Neuroprotective effects of the cultivated Chondrus Crispus in a C. Elegans model of Parkinson's disease. Mar Drugs. 2015;13:2250-66.
Gosai SJ, Kwak JH, Luke CJ, Long OS, King DE, Kovatch KJ, et al. Automated high-content live animal drug screening using C. Elegans expressing the aggregation prone serpin α1-antitrypsin Z. PLoS One. 2010;5:e15460.
Yamanaka K, Okubo Y, Suzaki T, Ogura T. Analysis of the two p97/VCP/Cdc48p proteins of Caenorhabditis Elegans and their suppression of polyglutamine-induced protein aggregation. J Struct Biol. 2004;146:242-50. http://dx.doi.org/10.1016/j.jsb.2003.11.017.
Nollen EAA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci United States Am. 2004;101:6403-8. doi: https://doi.org/10.1073/pnas.0307697101.
Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, et al. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis Elegans. Proc Natl Acad Sci U S A. 2000;97:5750-55.
Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis Elegans. Proc Natl Acad Sci U S A. 2002;99:10417-22.
Parker JA, Connolly JB, Wellington C, Hayden M, Dausset J, Neri C. Expanded polyglutamines in Caenorhabditis Elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci. 2001;98:13318-23. doi: https://doi.org/10.1073/pnas.231476398.
Faber PW, Alter JR, MacDonald ME, Hart AC. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis Elegans sensory neuron. Proc Natl Acad Sci. 1999;96:179-84. doi: https://doi.org/10.1073/pnas.96.1.179.
Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE, Monteiro MJ. Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin. Hum Mol Genet. 2006;15:1025-41.
Vayndorf EM, Scerbak C, Hunter S, Neuswanger JR, Toth M, Parker JA, et al. Morphological remodeling of C. Elegans neurons during aging is modified by compromised protein homeostasis. Npj Aging Mech Dis. 2016;2:16001. http://dx.doi.org/10.1038/npjamd.2016.1.
Teixeira-Castro A, Jalles A, Esteves S, Kang S, da Silva SL, Silva-Fernandes A, et al. Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain. 2015;138:3221-37. http://dx.doi.org/10.1093/brain/awv262.
Juenemann K, Schipper-Krom S, Wiemhoefer A, Kloss A, Sanz AS, Reits EAJ. Expanded polyglutamine-containing N-terminal huntingtin fragments are entirely degraded by mammalian proteasomes. J Biol Chem. 2013;288:27068-84.
Khan LA, Bauer PO, Miyazaki H, Lindenberg KS, Landwehrmeyer BG, Nukina N. Expanded polyglutamines impair synaptic transmission and ubiquitin-proteasome system in Caenorhabditis Elegans. J Neurochem. 2006;98:576-87.
Nozaki K, Onodera O, Takano H, Tsuji S. Amino acid sequences flanking polyglutamine stretches influence their potential for aggregate formation. Neuroreport. 2001;12:3357-64.
Brignull HR, Moore FE, Tang SJ, Morimoto RI. Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis Elegans model. J Neurosci. 2006;26:7597-606.
Brenner S. The genetics of Caenorhabditis Elegans. Genetics. 1974;77:71-94.
Ramot D, Johnson BE, Berry TL, Carnell L, Goodman MB. The parallel worm tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS One. 2008;3:e2208.
Machino K, Link CD, Wang S, Murakami H, Murakami S. A semi-automated motion-tracking analysis of locomotion speed in the C. Elegans transgenics overexpressing beta-amyloid in neurons. Front Genet. 2014;5:202.
Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, et al. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo Biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis Elegans. J Neurosci. 2006;26:13102-13.
Dostal V, Link CD. Assaying β-amyloid toxicity using a transgenic C. Elegans model. J Vis Exp. 2010;11:477-86.
McColl G, Roberts BR, Pukala TL, Kenche VB, Roberts CM, Link CD, et al. Utility of an improved model of amyloid-beta (Aβ1-42) toxicity in Caenorhabditis Elegans for drug screening for Alzheimer's disease. Mol Neurodegener. 2012;7:57.
Glenn CF, Chow DK, David L, Cooke CA, Gami MS, Iser WB, et al. Behavioral deficits during early stages of aging in Caenorhabditis Elegans result from locomotory deficits possibly linked to muscle frailty. J Gerontol A Biol Sci Med Sci. 2004;59:1251-60.
Kim HM, Do C-H, Lee DH. Taurine reduces ER stress in C. Elegans. J Biomed Sci. 2010;17(Suppl 1):S26.
Bischof LJ, Kao C-Y, Los FCO, Gonzalez MR, Shen Z, Briggs SP, et al. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog. 2008;4:e1000176.
Selkoe D, Mandelkow E, Holtzman D. Deciphering Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2:a011460.
Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006;443:780-6.
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297:353-6.
Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15:384-96.
Link CD. Expression of human beta-amyloid peptide in transgenic Caenorhabditis Elegans. Proc Natl Acad Sci U S A. 1995;92:9368-72.
Diomede L, Soria C, Romeo M, Giorgetti S, Marchese L, Mangione PP, et al. C. Elegans expressing human β2-microglobulin: a novel model for studying the relationship between the molecular assembly and the toxic phenotype. PLoS One. 2012;7:e52314.
Vandevenne M, Filee P, Scarafone N, Cloes B, Gaspard G, Yilmaz N, et al. The bacillus licheniformis BlaP beta-lactamase as a model protein scaffold to study the insertion of protein fragments. Protein Sci. 2007;16:2260-71.
Leach MD, Kim T, DiGregorio SE, Collins C, Zhang Z, Duennwald ML, et al. Candida Albicans is resistant to Polyglutamine aggregation and toxicity. G3 Genes|Genomes|Genetics. 2017;7:95-108. doi: https://doi.org/10.1534/g3.116.035675.
Aguilaniu H. Asymmetric inheritance of Oxidatively damaged proteins during Cytokinesis. Science (80-). 2003;299:1751-3. doi: https://doi.org/10.1126/science.1080418.
Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MAWH, van der Want JJL, et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 2006;4:e417. https://doi.org/10.1371/journal.pbio.0040417.
Stewart EJ, Madden R, Paul G, Taddei F. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 2005;3:e45. https://doi.org/10.1371/journal.pbio.0030045.
Ciryam P, Kundra R, Morimoto RI, Dobson CM, Vendruscolo M. Supersaturation is a major driving force for protein aggregation in neurodegenerative diseases. Trends Pharmacol Sci. 2015;36:72-7.
Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, et al. SUMO modification of Huntingtin and Huntington's disease pathology. Science. 2004;304:100-104.
Duennwald ML, Jagadish S, Muchowski PJ, Lindquist S. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci. 2006;103:11045-50. doi: https://doi.org/10.1073/pnas.0604547103.
Duennwald ML, Jagadish S, Giorgini F, Muchowski PJ, Lindquist S. A network of protein interactions determines polyglutamine toxicity. Proc Natl Acad Sci. 2006;103:11051-6. doi: https://doi.org/10.1073/pnas.0604548103.
Wang Y, Meriin AB, Zaarur N, Romanova NV, Chernoff YO, Costello CE, et al. Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB J. 2009;23:451-63. doi: https://doi.org/10.1096/fj.08-117614.
Teixeira-Castro A, Ailion M, Jalles A, Brignull HR, Vilaça JL, Dias N, et al. Neuron-specific proteotoxicity of mutant ataxin-3 in C. Elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet. 2011;20:2996-3009. doi: https://doi.org/10.1093/hmg/ddr203.
Lakso M, Vartiainen S, Moilanen A-M, Sirviö J, Thomas JH, Nass R, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis Elegans overexpressing human α-synuclein. J Neurochem. 2004;86:165-72.
Faber PW, Voisine C, King DC, Bates EA, Hart AC. Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis Elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci U S A. 2002;99:17131-6.
Link CD. C. Elegans models of age-associated neurodegenerative diseases: lessons from transgenic worm models of Alzheimer's disease. Exp Gerontol. 2006;41:1007-13.
Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y. Behavioral phenotyping of a trangenic C. Elegans expression neuronal amyloid beta. J Alzheimers Dis. 2010;19:9.
Jia K, Hart AC, Levine B. Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis Elegans. Autophagy. 3:21-5.
Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B, Forsman M, et al. A standard numbering scheme for the class a beta-lactamases. Biochem J. 1991;276(Pt 1):269-70.