Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu
Kulimushi, P. Z.; Basime, G. C.; Nachigera, G. M.et al.
2017 • In Environmental Science and Pollution Research, p. 1-14
Kulimushi, P. Z.; Microbial Processes and Interactions Laboratory, Faculty Gembloux Agro-BioTech, University of Liège, Passage des Déportés 2, Gembloux, Belgium, Laboratory of Biotechnology and Molecular Biology, Faculty of Agricultural and Environmental Sciences, Université Evangélique en Afrique, Bukavu, Democratic Republic Congo
Basime, G. C.; Laboratory of Ecophysiology and Plants Nutrition, Faculty of Agricultural and Environmental Sciences, Université Evangélique en Afrique, Bukavu, Democratic Republic Congo
Nachigera, G. M.; Laboratory of Ecophysiology and Plants Nutrition, Faculty of Agricultural and Environmental Sciences, Université Evangélique en Afrique, Bukavu, Democratic Republic Congo
Thonart, Philippe ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbial, food and biobased technologies
Ongena, Marc ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbial, food and biobased technologies
Language :
English
Title :
Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu
Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8:1–12. doi:10.1186/1475-2859-8-63
Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Heidelberg, pp 41–76
Budiharjo A, Chowdhury SP, Dietel K, Beator B, Dolgova O, Fan B, Borriss R (2014) Transposon mutagenesis of the plant-associated Bacillus amyloliquefaciens sp. plantarum FZB42 revealed that the nfrA and RBAM17410 genes are involved in plant-microbe-interactions. PLoS One 9:1–13. doi:10.1371/journal.pone.0098267
Cavaglieri L, Orlando J, Rodríguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156:748–754. doi:10.1016/j.resmic.2005.03.001
Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/ amyloliquefaciens. Microb Biotechnol 8:281–295. doi:10.1111/1751-7915.12238
Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant-Microbe Interact 27:87–100. doi:10.1094/MPMI-09-13-0262
Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37. doi:10.1016/j.jbiotec.2008.10.011
Chitarra GS, Breeuwer P, Nout MJR, Van Aelst AC, Rombouts FM, Abee T (2003) An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J Appl Microbiol 94:159–166. doi:10.1046/j.1365-2672.2003.01819.x
Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol 6:1–12. doi:10.3389/fmicb.2015.00780
Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi:10.1128/AEM.71.9.4951-4959.2005
Debois D, Fernandez O, Franzil L, Jourdan E, de Brogniez A, Willems L, Ongena M (2015) Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environ Microbiol Rep 7:570–582. doi:10.1111/1758-2229.12286
Debois D, Jourdan E, Smargiasso N, Thonart P, De Pauw E, Ongena M (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 86:4431–4438. doi:10.1021/ac500290s
Debois D, Ongena M, Cawoy H, De Pauw E (2013) MALDI-FTICR MS imaging as a powerful tool to identify Paenibacillus antibiotics involved in the inhibition of plant pathogens. J Am Soc Mass Spectrom 24:1202–1213. doi:10.1007/s13361-013-0620-2
Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus velezensis, Bacillus amyloliquefaciens subsp. plantarum and Bacillus oryzicola are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 66:1212–1217. doi:10.1099/ijsem.0.000858
Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359. doi:10.1146/annurev.phyto.43.032904.092924
García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb Biotechnol 6:264–274. doi:10.1111/1751-7915.12028
Gond SK, Bergen MS, Torres MS, White JF (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87. doi:10.1016/j.micres.2014.11.004
Hanene R, Abdeljabbar H, Marc R, Abdellatif B, Ferid L, Najla SZ (2012) Biological control of Fusarium foot rot of wheat using fengycin-producing Bacillus subtilis isolated from salty soil. Afr J Biotechnol 11:8464–8475. doi:10.5897/AJB11.2887
Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22:456–468. doi:10.1371/journal.pone.0106041
Kwon J, Kang S, Kim J, Park C (2001) Rhizopus soft rot on cherry tomato caused by Rhizopus stolonifer in Korea. J Microbiol 29:176–178. doi:10.4489/MYCO.2006.34.3.151
Leclère V, Béchet M, Adam A, Wathelet B, Ongena M, Thonart P, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organisms antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584. doi:10.1128/AEM.71.8.4577
Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918
Manjula K, Podile AR (2005) Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Indian J Exp Biol 43:892–896
Mehta P, Walia A, Chauhan A, Kulshrestha S, Shirkot CK (2013) Phosphate solubilisation and plant growth promoting potential by stress tolerant Bacillus sp. isolated from rhizosphere of apple orchards in trans Himalayan region of Himachal Pradesh. Ann Appl Biol 163:430–443. doi:10.1111/aab.12077
Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp: Exploiting bacterial traits for crop protection. A Van Leeuw J Microb 92:367. doi:10.1007/s10482-007-9167-1
Molinatto G, Puopolo G, Sonego P, Moretto M, Engelen K, Viti C, Ongena M, Pertot I (2016) Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499,a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. J Biotechnol 238:56–59. doi:10.1016/j.jbiotec.2016.09.013
Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629. doi:10.1046/j.1365-2672.2001.01290.x
Nagorska K, Bikowski M, Obuchowskji M (2007) Multicellular behaviourand production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol 54:495–508
Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191. doi:10.1111/j.1574-6941.2011.01208
Nihorimbere V, Ongena M, Cawoy H, Brostaux Y, Kakana P, Jourdan E, Thonart P (2010) Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: reduction of local Fusarium disease and growth promotion. Afr J Microbiol Res 4:1135–1142
Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi:10.1016/j.tim.2007.12.009
Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. doi:10.1111/j.1462-2920.2006.01202.x
Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193. doi:10.1016/j.copbio.2010.12.003
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi:10.1146/annurev-phyto-082712-102340
Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. doi:10.1111/j.1574-6976.2010.00221.x
Ravensberg WJ (2015) Commercialisation of microbes: present situation and future prospects. In: Lugtenberg B (ed) Principles of Plant-microbe interactions. Microbes for sustainable agriculture. Springer International Publishing Switzerland, Heidelberg, p 309–317
Reid LM, Zhu X, Canada. Agriculture et agroalimentaire Canada. (2005) Criblage du maïs quant à sa résistance aux maladies courantes au Canada. Agriculture et agroalimentaire Canada
Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi:10.1016/S0734-9750(99)00014-2
Romero D, De Vicente A, Olmos JL, Dávila JC, Pérez-García A (2007) Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J Appl Microbiol 103:969–976. doi:10.1111/j.1365-2672.2007.03323
Rückert C, Blom J, Chen X, Reva O, Borriss R (2011) Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 155:78–85. doi:10.1016/j.jbiotec.2011.01.006
Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932
Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. doi:10.1111/j.1365-2958.2005.04587.x
Sweets LE, Wright S (2008) Integrated pest management. Corn diseases. Plant protection programs. College of Agriculture, Food and Natural Resources. University of Missouri, Columbia. 1–23
Tollens E (2003) L’état actuel de la sécurité alimentaire en R.D. Congo: Diagnostic et perspectives. Working Paper, n°77, Département d'Economie Agricole et de l'Environnement, Katholieke Universiteit Leuven, 6p
Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160. doi:10.1111/j.1365-2672.2004.02252
Velmurugan N, Choi MS, Han SS, Lee YS (2009) Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: in vitro and in vivo experiments. J Microbiol 47:385–392. doi:10.1007/s12275-009-0018-9
Wu L, Wu HJ, Qiao J, Gao X, Borriss R (2015) Novel routes for improving biocontrol activity of Bacillus-based bioinoculants. Front Microbiol 6:1–13. doi:10.3389/fmicb.2015.01395
Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, Teixidó N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132:609–619. doi:10.1007/s10658-011-9905-0
Yildirim I, Turhan H, Özgen B (2010) The effects of head rot disease (Rhizopus stolonifer) on sunflower genotypes at two different growth stages. Turk J Field Crops 15:94–98
Zhang X, Li B, Wang Y, Guo Q, Lu X, Li S, Ma P (2013) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97:9525–9534. doi:10.1007/s00253