[1] Xu, T., Pagadala, V., Mueller, D.M., Understanding structure, function, and mutations in the mitochondrial ATP synthase. Microb. Cell 2:4 (2015), 105–125, 10.15698/mic2015.04.197.
[2] Wächter, A., Bi, Y., Dunn, S.D., Cain, B.D., Sielaff, H., Wintermann, F., Engelbrecht, S., Junge, W., Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. Proc. Natl. Acad. Sci. U. S. A. 108:10 (2011), 3924–3929, 10.1073/pnas.1011581108.
[3] Zhou, A., Rohou, A., Schep, D.G., Bason, J.V., Montgomery, M.G., Walker, J.E., Grigorieff, N., Rubinstein, J.L., Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. elife, 4, 2015, e10180, 10.7554/eLife.10180.
[4] Noji, H., Yasuda, R., Yoshida, M., Kinosita, K., Direct observation of the rotation of F1-ATPase. Nature 386 (1997), 299–302, 10.1038/386299a0.
[6] Zíková, A., Schnaufer, A., Dalley, R.A., Panigrahi, A.K., Stuart, K.D., The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog., 5(5), 2009, e1000436, 10.1371/journal.ppat.1000436.
[7] Perez, E., Lapaille, M., Degand, H., Cilibrasi, L., Villavicencio-Queijeiro, A., Morsomme, P., González-Halphen, D., Field, M.C., Remacle, C., Baurain, D., Cardol, P., The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 19:Pt B (2014), 338–349, 10.1016/j.mito.2014.02.001.
[8] Vázquez-Acevedo, M., Cardol, P., Cano-Estrada, A., Lapaille, M., Remacle, C., González-Halphen, D., The mitochondrial ATP synthase of chlorophycean algae contains eight subunits of unknown origin involved in the formation of an atypical stator-stalk and in the dimerization of the complex. J. Bioenerg. Biomembr. 38:5-6 (2006), 271–282, 10.1007/s10863-006-9046-x.
[9] van Lis, R., Atteia, A., Mendoza-Hernández, G., González-Halphen, D., Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol. 132:1 (2003), 318–330, 10.1104/pp.102.018325.
[10] Atteia, A., Dreyfus, G., González-Halphen, D., Characterization of the alpha and beta-subunits of the F0F1-ATPase from the alga Polytomella spp., a colorless relative of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1320:3 (1997), 275–284, 10.1016/S0005-2728(97)00031-5.
[11] Dudkina, N.V., Heinemeyer, J., Keegstra, W., Boekema, E.J., Braun, H.P., Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS Lett. 579:25 (2005), 5769–5772, 10.1016/j.febslet.2005.09.065.
[12] Dudkina, N.V., Sunderhaus, S., Braun, H.P., Boekema, E.J., Characterization of dimeric ATP synthase and cristae membrane ultrastructure from Saccharomyces and Polytomella mitochondria. FEBS Lett. 580:14 (2006), 3427–3432, 10.1016/j.febslet.2006.04.097.
[13] Cano-Estrada, A., Vázquez-Acevedo, M., Villavicencio-Queijeiro, A., Figueroa-Martínez, F., Miranda-Astudillo, H., Cordeiro, Y., Mignaco, J.A., Foguel, D., Cardol, P., Lapaille, M., Remacle, C., Wilkens, S., González-Halphen, D., Subunit-subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of Polytomella sp. Biochim. Biophys. Acta 1797:8 (2010), 1439–1448, 10.1016/j.bbabio.2010.02.024.
[14] Dudkina, N.V., Oostergetel, G.T., Lewejohann, D., Braun, H.P., Boekema, E.J., Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography. Biochim. Biophys. Acta 1797:2 (2010), 272–277, 10.1016/j.bbabio.2009.11.004.
[15] Allegretti, M., Klusch, N., Mills, D.J., Vonck, J., Kühlbrandt, W., Davies, K.M., Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521:7551 (2015), 237–240, 10.1038/nature14185.
[16] van Lis, R., Mendoza-Hernández, G., Groth, G., Atteia, A., New insights into the unique structure of the F0F1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. Plant Physiol. 144:2 (2007), 1190–1199, 10.1104/pp.106.094060.
[17] Villavicencio-Queijeiro, A., Vázquez-Acevedo, M., Cano-Estrada, A., Zarco-Zavala, M., Tuena de Gómez, M., Mignaco, J.A., Freire, M.M., Scofano, H.M., Foguel, D., Cardol, P., Remacle, C., González-Halphen, D., The fully-active and structurally-stable form of the mitochondrial ATP synthase of Polytomella sp. is dimeric. J. Bioenerg. Biomembr. 41:1 (2009), 1–13, 10.1007/s10863-009-9203-0.
[18] Lapaille, M., Escobar-Ramírez, A., Degand, H., Baurain, D., Rodríguez-Salinas, E., Coosemans, N., Boutry, M., Gonzalez-Halphen, D., Remacle, C., Cardol, P., Atypical subunit composition of the chlorophycean mitochondrial F1FO-ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme. Mol. Biol. Evol. 27:7 (2010), 1630–1644, 10.1093/molbev/msq049.
[19] Miranda-Astudillo, H., Cano-Estrada, A., Vázquez-Acevedo, M., Colina-Tenorio, L., Downie-Velasco, A., Cardol, P., Remacle, C., Domínguez-Ramírez, L., González-Halphen, D., Interactions of subunits Asa2, Asa4 and Asa7 in the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. Biochim. Biophys. Acta 1837:1 (2014), 1–13, 10.1016/j.bbabio.2013.08.001.
[20] Colina-Tenorio, L., Miranda-Astudillo, H., Cano-Estrada, A., Vázquez-Acevedo, M., Cardol, P., Remacle, C., González-Halphen, D., Subunit Asa1 spans all the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. Biochim. Biophys. Acta 1857:4 (2016), 359–369, 10.1016/j.bbabio.2015.11.012.
[21] Schägger, H., Denaturing electrophoretic techniques. von Jagow, G., Schägger, H., (eds.) A Practical Guide to Membrane Protein Purification, 1994, Academic Press, San Diego, 59–79, 10.1016/b978-0-08-057172-0.50010-3.
[22] Markwell, M.A.K., Hass, S.M., Biber, L.L., Tolbert, N.E., A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87:1 (1978), 206–210, 10.1016/0003-2697(78)90586-9.
[23] Atteia, A., van Lis, R., Beale, S.I., Enzymes of the heme biosynthetic pathway in the non photosynthetic alga Polytomella sp. Eukaryot. Cell 4:12 (2005), 2087–2097, 10.1128/EC.4.12.2087-2097.2005.
[24] Sambrook, J., Russel, D.W., The Hanahan Method for preparation and Transformation of Competent E. coli: High-efficiency Transformation. Sambrook, J., Russel, D.W., (eds.) Molecular Cloning: a Laboratory Manual, 2001, Cold Spring Harbor Laboratory Press, New York, 1.105–1.111, 10.1101/pdb.prot3942.
[26] Schägger, H., Aquila, H., Von Jagow, G., Coomassie blue–sodium dodecyl sulfate–polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. Anal. Biochem. 173:1 (1988), 201–205.
[27] González-Halphen, D., Vázquez-Acevedo, M., García-Ponce, B., On the interaction of mitochondrial complex III with the Rieske iron-sulfur protein (subunit V). J. Biol. Chem. 266:6 (1991), 3870–3876.
[28] Towbin, H., Staehelin, T., Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U. S. A. 76:9 (1979), 4350–4354, 10.1073/pnas.76.9.4350.
[29] Hall, R.A., Studying protein–protein interactions via blot overlay or Far Western blot. Fu, H., (eds.) Protein-Protein Interactions: Methods and Applications, 2004, Humana Press, New Jersey, 167–174, 10.1385/1-59259-762-9:167.
[30] Gietz, R.D., Schiestl, R.H., Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2 (2007), 35–37, 10.1038/nprot.2007.14.
[31] Snider, C., Jayasinghe, S., Hristova, K., White, S.H., MPEx: a tool for exploring membrane proteins. Protein Sci. 18:12 (2009), 2624–2628, 10.1002/pro.256.
[32] Botelho, S.C., Osterberg, M., Reichert, A.S., Yamano, K., Björkholm, P., Endo, T., von Heijne, G., Kim, H., TIM23-mediated insertion of transmembrane α-helices into the mitochondrial inner membrane. EMBO J. 30:6 (2011), 1003–1011, 10.1038/emboj.2011.29.
[33] Delorenzi, M., Speed, T., An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18:4 (2002), 617–625, 10.1093/bioinformatics/18.4.617.
[34] Morales-Rios, E., Montgomery, M.G., Leslie, A.G., Walker, J.E., Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. Proc. Natl. Acad. Sci. U. S. A. 112:43 (2015), 13231–13236, 10.1073/pnas.1517542112.
[35] Hahn, A., Parey, K., Bublitz, M., Mills, D.J., Zickermann, V., Vonck, J., Kühlbrandt, W., Meier, T., Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol. Cell 63:3 (2016), 445–456, 10.1016/j.molcel.2016.05.037.
[36] Vinothkumar, K.R., Montgomery, M.G., Liu, S., Walker, J.E., Structure of the mitochondrial ATP synthase from Pichia angusta determined by electron cryo-microscopy. Proc. Natl. Acad. Sci. U. S. A. 113:45 (2016), 12709–12714, 10.1073/pnas.1615902113.
[37] Leone, V., Faraldo-Gómez, J.D., Structure and mechanism of the ATP synthase membrane motor inferred from quantitative integrative modeling. J. Gen. Physiol. 148:6 (2016), 441–457, 10.1085/jgp.201611679.
[38] Claros, M.G., Perea, J., Shu, Y., Samatey, F.A., Popot, J.L., Jacq, C., Limitations to in vivo import of hydrophobic proteins into yeast mitochondria: the case of a cytoplasmically synthesized apocytochrome b. Eur. J. Biochem. 228:3 (1995), 762–771, 10.1111/j.1432-1033.1995.0762m.x.
[39] Rajesh, S., Knowles, T., Overduin, M., Production of membrane proteins without cells or detergents. New Biotechnol. 28:3 (2011), 250–254, 10.1016/j.nbt.2010.07.011.
[40] Miroux, B., Walker, J.E., Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260:3 (1996), 289–298, 10.1006/jmbi.1996.0399.
[41] Walker, J.E., The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41:1 (2013), 1–16, 10.1042/BST20110773.
[42] Foster, D.L., Fillingame, R.H., Stoichiometry of subunits in the H+-ATP synthase complex of Escherichia coli. J. Biol. Chem. 257 (1982), 2009–2015.
[43] Wittig, I., Schägger, H., Structural organization of mitochondrial ATP synthase. Biochim. Biophys. Acta 1777:7-8 (2008), 592–598, 10.1016/j.bbabio.2008.04.027.
[44] Arselin, G., Vaillier, J., Graves, P.V., Velours, J., ATP synthase of yeast mitochondria, isolation of the subunit h and disruption of the ATP14 gene. J. Biol. Chem. 271:34 (1996), 20284–20290, 10.1074/jbc.271.34.20284.
[45] Paumard, P., Vaillier, J., Napias, C., Arselin, G., Brèthes, D., Graves, P.V., Velours, J., Environmental study of subunit i, a F(O) component of the yeast ATP synthase. Biochemistry 39:14 (2000), 4199–4205, 10.1021/bi992438l.
[46] Liu, S., Charlesworth, T.J., Bason, J.V., Montgomery, M.G., Harbour, M.E., Fearnley, I.M., Walker, J.E., The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species. Biochem. J. 468:1 (2015), 167–175, 10.1042/BJ20150197.
[47] Meyer, B., Wittig, I., Trifilieff, E., Karas, M., Schägger, H., Identification of two proteins associated with mammalian ATP synthase. Mol. Cell. Proteomics 6:10 (2007), 1690–1699, 10.1074/mcp.M700097-MCP200.
[48] Jonckheere, A.I., Smeitink, J.A., Rodenburg, R.J., Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 35:2 (2012), 211–225, 10.1007/s10545-011-9382-9.
[49] Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D.M., Brèthes, D., di Rago, J.P., Velours, J., The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21:3 (2002), 221–230, 10.1093/emboj/21.3.221.
[50] Arselin, G., Giraud, M.F., Dautant, A., Vaillier, J., Brèthes, D., Coulary-Salin, B., Schaeffer, J., Velours, J., The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. Eur. J. Biochem. 270:8 (2003), 1875–1884, 10.1046/j.1432-1033.2003.03557.x.
[51] Arselin, G., Vaillier, J., Salin, B., Schaeffer, J., Giraud, M.F., Dautant, A., Brèthes, D., Velours, J., The modulation in subunits e and g amounts of yeast ATP synthase modifies mitochondrial cristae morphology. J. Biol. Chem. 279:39 (2004), 40392–40399, 10.1074/jbc.M404316200.
[52] Vázquez-Acevedo, M., Vega-deLuna, F., Sánchez-Vásquez, L., Colina-Tenorio, L., Remacle, C., Cardol, P., Miranda-Astudillo, H., González-Halphen, D., Dissecting the peripheral stalk of the mitochondrial ATP synthase of chlorophycean algae. Biochim. Biophys. Acta 1857:8 (2016), 1183–1190, 10.1016/j.bbabio.2016.02.003.
[53] Everard-Gigot, V., Dunn, C.D., Dolan, B.M., Brunner, S., Jensen, R.E., Stuart, R.A., Functional analysis of subunit e of the F1FO-ATP synthase of the yeast Saccharomyces cerevisiae: importance of the N-terminal membrane anchor region. Eukaryot. Cell 4:2 (2005), 346–355, 10.1128/EC.4.2.346–355.2005.
[54] Practical aspects in expression and purification of membrane proteins for structural analysis. Vinothkumar, K.R., Edwards, P.C., Standfuss, J., Schmidt-Krey, I., Cheng, Y., (eds.) Electron Crystallography of Soluble and Membrane Proteins: Methods and Protocols, 2013, Humana Press, New York, 17–30, 10.1007/978-1-62703-176-9_2.
[55] Banères, J.L., Refolding of G-protein-coupled receptors. Grisshamer, R., Buchanan, S.K., (eds.) Structural Biology of Membrane Proteins, 2006, RCS Publishing, 3–14, 10.1039/9781847552563.
[56] Nagy, J.K., Lonzer, W.L., Sanders, C.R., Kinetic study of folding and misfolding of diacylglycerol kinase in model membranes. Biochemistry 40 (2001), 8971–8980, 10.1021/bi010202n.
[57] Valiyaveetil, F.I., MacKinnon, R., Muir, T.W., Semisynthesis and folding of the potassium channel KcsA. J. Am. Chem. Soc. 124 (2002), 9113–9120, 10.1021/ja0266722.
[58] Harris, N.J., Findlay, H.E., Simms, J., Liu, X., Booth, P.J., Relative domain folding and stability of a membrane transport protein. J. Mol. Biol. 426 (2014), 1812–1825, 10.1016/j.jmb.2014.01.012.
[59] Strategies for the purification of membrane proteins. Smith, S.M., Walls, Dermot, Loughran, Sinéad T., (eds.) Protein Chromatography: Methods and Protocols Methods in Mol. Biol, 2017, Humana Press, New York, 389–400, 10.1007/978-1-4939-6412-3_21.
[60] Petschnigg, J., Moe, O.W., Stagljar, I., Using yeast as a model to study membrane proteins. Curr. Opin. Nephrol. Hypertens. 20:4 (2011), 425–432, 10.1097/MNH.0b013e3283478611.
[61] Bustos, D.M., Velours, J., The modification of the conserved GXXXG motif of the membrane-spanning segment of subunit g destabilizes the supramolecular species of yeast ATP synthase. J. Biol. Chem. 280:32 (2005), 29004–29010, 10.1074/jbc.M502140200.
[62] Saddar, S., Stuart, R.A., The yeast F(1)F(0)-ATP synthase: analysis of the molecular organization of subunit g and the importance of a conserved GXXXG motif. J. Biol. Chem. 280:26 (2005), 24435–24442, 10.1074/jbc.M502804200.
[63] Zhao, J., Benlekbir, S., Rubinstein, J.L., Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:7551 (2015), 241–245, 10.1038/nature14365.
[64] Kühlbrandt, W., Davies, K.M., Rotary ATPases: a new twist to an ancient machine. Trends Biochem. Sci. 41:1 (2016), 106–116, 10.1016/j.tibs.2015.10.006.
[65] Jiang, W., Fillingame, R.H., Interacting helical faces of subunits a and c in the F1FO ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc. Natl. Acad. Sci. U. S. A. 95:12 (1998), 6607–6612, 10.1073/pnas.95.12.6607.
[66] Vik, S.B., Ishmukhametov, R.R., Structure and function of subunit a of the ATP synthase of Escherichia coli. J. Bioenerg. Biomembr. 37:6 (2005), 445–449, 10.1007/s10863-005-9488-6.
[67] Funes, S., Davidson, E., Claros, M.G., van Lis, R., Pérez-Martínez, X., Vázquez-Acevedo, M., King, M.P., González-Halphen, D., The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J. Biol. Chem. 277:8 (2002), 6051–6058, 10.1074/jbc.M109993200.
[68] Thomas, D., Bron, P., Weimann, T., Dautant, A., Giraud, M.F., Paumard, P., Salin, B., Cavalier, A., Velours, J., Brèthes, D., Supramolecular organization of the yeast F1FO-ATP synthase. Biol. Cell. 100:10 (2008), 591–601, 10.1042/BC20080022.