Brouillard, P., Boon, L. and Vikkula, M. (2014) Genetics of lymphatic anomalies. J. Clin. Invest., 124, 898-904
Gonzalez-Garay, M.L., Aldrich, M.B., Rasmussen, J.C., Guilliod, R., Lapinski, P.E., King, P.D. and Sevick-Muraca, E.M. (2016) A novel mutation in CELSR1 is associated with hereditary lymphedema. Vasc. Cell, 8
Martin-Almedina, S., Martinez-Corral, I., Holdhus, R., Vicente, A., Fotiou, E., Lin, S., Petersen, K., Simpson, M.A., Hoischen, A., Gilissen, C. et al. (2016) EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J. Clin. Invest., 126, 3080-3088
Alders, M., Al-Gazali, L., Cordeiro, I., Dallapiccola, B., Garavelli, L., Tuysuz, B., Salehi, F., Haagmans, M.A., Mook, O.R., Majoie, C.B. et al. (2014) Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum. Genet., 133, 1161-1167
Fotiou, E., Martin-Almedina, S., Simpson, M.A., Lin, S., Gordon, K., Brice, G., Atton, G., Jeffery, I., Rees, D.C., Mignot, C. et al. (2015) Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat. Commun., 6, 8085
Lukacs, V., Mathur, J., Mao, R., Bayrak-Toydemir, P., Procter, M., Cahalan, S.M., Kim, H.J., Bandell, M., Longo, N., Day, R.W. et al. (2015) Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat. Commun., 6, 8329
Hong, S.E., Shugart, Y.Y., Huang, D.T., Shahwan, S.A., Grant, P.E., Hourihane, J.O., Martin, N.D. and Walsh, C.A. (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet., 26, 93-96
Koenighofer, M., Hung, C.Y., McCauley, J.L., Dallman, J., Back, E.J., Mihalek, I., Gripp, K.W., Sol-Church, K., Rusconi, P., Zhang, Z. et al. (2016) Mutations in RIT1 cause Noonan syndrome: additional functional evidence and expanding the clinical phenotype. Clin. Genet., 89, 359-366
Milosavljevic, D., Overwater, E., Tamminga, S., de Boer, K., Elting, M.W., van Hoorn, M.E., Rinne, T. and Houweling, A.C. (2016) Two cases of RIT1 associated Noonan syndrome: Further delineation of the clinical phenotype and review of the literature. Am. J. Med. Genet. A, 170, 1874-1880
Geffrey, A.L., Shinnick, J.E., Staley, B.A., Boronat, S. and Thiele, E.A. (2014) Lymphedema in tuberous sclerosis complex. Am. J. Med. Genet. A, 164A, 1438-1442
Gordon, K., Schulte, D., Brice, G., Simpson, M.A., Roukens, M.G., van Impel, A., Connell, F., Kalidas, K., Jeffery, S., Mortimer, P.S. et al. (2013) Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like primary lymphedema. Circ. Res., 112, 956-960
Balboa-Beltran, E., Fernandez-Seara, M.J., Perez-Munuzuri, A., Lago, R., Garcia-Magan, C., Couce, M.L., Sobrino, B., Amigo, J., Carracedo, A. and Barros, F. (2014) A novel stop mutation in the vascular endothelial growth factor-C gene (VEGFC) results in Milroy-like disease. J. Med. Genet., 51, 475-478
Au, A.C., Hernandez, P.A., Lieber, E., Nadroo, A.M., Shen, Y.M., Kelley, K.A., Gelb, B.D. and Diaz, G.A. (2010) Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am. J. Hum. Genet., 87, 436-444
Jeltsch, M., Jha, S.K., Tvorogov, D., Anisimov, A., Leppanen, V.M., Holopainen, T., Kivela, R., Ortega, S., Karpanen, T. and Alitalo, K. (2014) CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation, 129, 1962-1971
Alders, M., Hogan, B.M., Gjini, E., Salehi, F., Al-Gazali, L., Hennekam, E.A., Holmberg, E.E., Mannens, M.M., Mulder, M.F., Offerhaus, G.J. et al. (2009) Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat. Genet., 41, 1272-1274
Connell, F., Kalidas, K., Ostergaard, P., Brice, G., Homfray, T., Roberts, L., Bunyan, D.J., Mitton, S., Mansour, S., Mortimer, P. et al. (2010) Linkage and sequence analysis indicate that CCBE1 is mutated in recessively inherited generalised lymphatic dysplasia. Hum. Genet., 127, 231-241
Bos, F.L., Caunt, M., Peterson-Maduro, J., Planas-Paz, L., Kowalski, J., Karpanen, T., van Impel, A., Tong, R., Ernst, J.A., Korving, J. et al. (2011) CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ. Res., 109, 486-491
Colige, A., Ruggiero, F., Vandenberghe, I., Dubail, J., Kesteloot, F., Van Beeumen, J., Beschin, A., Brys, L., Lapiere, C.M. and Nusgens, B. (2005) Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V. J. Biol. Chem., 280, 34397-34408
Baker, A.H., Edwards, D.R. and Murphy, G. (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci., 115, 3719-3727
Hennekam, R.C., Geerdink, R.A., Hamel, B.C., Hennekam, F.A., Kraus, P., Rammeloo, J.A. and Tillemans, A.A. (1989) Autosomal recessive intestinal lymphangiectasia and lymphedema, with facial anomalies and mental retardation. Am. J. Med. Genet., 34, 593-600
Hogan, B.M., Bos, F.L., Bussmann, J., Witte, M., Chi, N.C., Duckers, H.J. and Schulte-Merker, S. (2009) Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet., 41, 396-398
Roukens, M.G., Peterson-Maduro, J., Padberg, Y., Jeltsch, M., Leppanen, V.M., Bos, F.L., Alitalo, K., Schulte-Merker, S. and Schulte, D. (2015) Functional dissection of the CCBE1 protein: a crucial requirement for the collagen repeat domain. Circ. Res., 116, 1660-1669
Bui, H.M., Enis, D., Robciuc, M.R., Nurmi, H.J., Cohen, J., Chen, M., Yang, Y., Dhillon, V., Johnson, K., Zhang, H. et al. (2016) Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. J. Clin. Invest., 126, 2167-2180
Jha, K.S., Rauniyar, K., Karpanen, T., Leppanen, V.M., Brouillard, P., Vikkula, M., Alitalo, K. and Jeltsch, M. (2017) Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1. Sci. Rep., 7, 4916
Janssen, L., Dupont, L., Bekhouche, M., Noel, A., Leduc, C., Voz, M., Peers, B., Cataldo, D., Apte, S.S., Dubail, J. et al. (2016) ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis, 19, 53-65
Liu, X., Jian, X. and Boerwinkle, E. (2013) dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum. Mutat., 34, E2393-E2402
Bekhouche, M., Leduc, C., Dupont, L., Janssen, L., Delolme, F., Vadon-Le Goff, S., Smargiasso, N., Baiwir, D., Mazzucchelli, G., Zanella-Cleon, I. et al. (2016) Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-beta signaling as primary targets. FASEB J., 30, 1741-1756