Bhattacharya, Atri ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Enberg, Rikard
Reno, Mary Hall
Sarcevic, Ina
Language :
English
Title :
Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events
Publication date :
2015
Journal title :
Journal of Cosmology and Astroparticle Physics
eISSN :
1475-7516
Publisher :
Institute of Physics Publishing (IOP), Bristol, United Kingdom
IceCube collaboration, M.G. Aartsen et al., 2013 First observation of PeV-energy neutrinos with IceCube, Phys. Rev. Lett. 111 021103 [1304.5356]
IceCube collaboration, M.G. Aartsen et al., 2013 Evidence for high-energy extraterrestrial neutrinos at the IceCube detector, Science 342 1242856 [1311.5238]
IceCube collaboration, M.G. Aartsen et al., 2014 Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett. 113 101101 [1405.5303]
ANTARES collaboration, V. Van Elewyck, 2014 Recent results from the ANTARES neutrino telescope, Nucl. Instrum. Meth. A 742 63 [1311.7002]
L.A. Anchordoqui et al., 2014 Cosmic neutrino pevatrons: a brand new pathway to astronomy, astrophysics and particle physics, JHEAp 1-2 1 [1312.6587]
L.A. Anchordoqui et al., 2014 Pinning down the cosmic ray source mechanism with new IceCube data, Phys. Rev. D 89 083003 [1306.5021]
R. Laha, J.F. Beacom, B. Dasgupta, S. Horiuchi and K. Murase, 2013 Demystifying the PeV cascades in IceCube: less (energy) is more (events), Phys. Rev. D 88 043009 [1306.2309]
W. Essey, O.E. Kalashev, A. Kusenko and J.F. Beacom, 2010 Secondary photons and neutrinos from cosmic rays produced by distant blazars, Phys. Rev. Lett. 104 141102 [0912.3976]
O.E. Kalashev, A. Kusenko and W. Essey, 2013 PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei, Phys. Rev. Lett. 111 041103 [1303.0300]
J. Becker Tjus, B. Eichmann, F. Halzen, A. Kheirandish and S. Saba, 2014 High-energy neutrinos from radio galaxies, Phys. Rev. D 89 123005 [1406.0506]
K. Murase, M. Ahlers and B.C. Lacki, 2013 Testing the hadronuclear origin of pev neutrinos observed with IceCube, Phys. Rev. D 88 121301 [1306.3417]
K. Murase and K. Ioka, 2013 TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars, Phys. Rev. Lett. 111 121102 [1306.2274]
A. Loeb and E. Waxman, 2006 The cumulative background of high energy neutrinos from starburst galaxies J. Cosmol. Astropart. Phys. 2006 05 003 [astro-ph/0601695]
I. Tamborra, S. Ando and K. Murase, 2014 Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections and implications for starburst history J. Cosmol. Astropart. Phys. 2014 09 043 [1404.1189]
L.A. Anchordoqui, T.C. Paul, L.H.M. da Silva, D.F. Torres and B.J. Vlcek, 2014 What IceCube data tell us about neutrino emission from star-forming galaxies (so far), Phys. Rev. D 89 127304 [1405.7648]
A. Esmaili and P.D. Serpico, 2013 Are IceCube neutrinos unveiling PeV-scale decaying dark matter? J. Cosmol. Astropart. Phys. 2013 11 054 [1308.1105]
A. Bhattacharya, M.H. Reno and I. Sarcevic, 2014 Reconciling neutrino flux from heavy dark matter decay and recent events at IceCube J. High Energy Phys. JHEP06(2014)110 [1403.1862]
B. Feldstein, A. Kusenko, S. Matsumoto and T.T. Yanagida, 2013 Neutrinos at IceCube from heavy decaying dark matter, Phys. Rev. D 88 015004 [1303.7320]
Y. Bai, R. Lu and J. Salvado, Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin, [1311.5864]
S. Razzaque, P. Meszaros and E. Waxman, 2004 TeV neutrinos from core collapse supernovae and hypernovae, Phys. Rev. Lett. 93 181101 [astro-ph/0407064]
S. Razzaque, P. Meszaros and E. Waxman, 2005 High energy neutrinos from a slow jet model of core collapse supernovae, Mod. Phys. Lett. A 20 2351 [astro-ph/0509729]
S. Ando and J.F. Beacom, 2005 Revealing the supernova-gamma-ray burst connection with TeV neutrinos, Phys. Rev. Lett. 95 061103 [astro-ph/0502521]
S. Horiuchi and S. Ando, 2008 High-energy neutrinos from reverse shocks in choked and successful relativistic jets, Phys. Rev. D 77 063007 [0711.2580]
R. Enberg, M.H. Reno and I. Sarcevic, 2009 High energy neutrinos from charm in astrophysical sources, Phys. Rev. D 79 053006 [0808.2807]
R. Gandhi, A. Samanta and A. Watanabe, 2009 The role and detectability of the charm contribution to ultra high energy neutrino fluxes J. Cosmol. Astropart. Phys. 2009 09 015 [0905.2483]
IceCube, ROTSE collaboration, R. Abbasi et al., 2012 Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program, Astron. Astrophys. 539 A60 [1111.7030]
R. Vogt, 2008 The total charm cross-section, Eur. Phys. J. ST 155 213 [0709.2531]
ALICE collaboration, 2012 Measurement of charm production at central rapidity in proton-proton collisions at s1/2 = 7 TeV J. High Energy Phys. JHEP01(2012)128 [1111.1553]
ALICE collaboration, 2012 Measurement of charm production at central rapidity in proton-proton collisions at s1/2=2.76 TeV J. High Energy Phys. JHEP07(2012)191 [1205.4007]
LHCb collaboration, 2013 Prompt charm production in pp collisions at =7 TeV, Nucl. Phys. B 871 1 [1302.2864]
ATLAS collaboration, 2011 Measurement of D(∗) meson production cross sections in pp collisions at s1/2=7 TeV with the ATLAS detector, http://cds.cern.ch/record/1336746ATLAS-CONF-2011-017
Particle Data Group collaboration, K. Olive et al., 2014 Review of particle physics, Chin. Phys. C 38 090001
R.E. Nelson, R. Vogt and A.D. Frawley, 2013 Narrowing the uncertainty on the total charm cross section and its effect on the J/ψ cross section, Phys. Rev. C 87 014908 [1210.4610]
A. Bhattacharya et al., Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC, [1502.0107]
J. Giacalone and J.R. Jokipii, 2006 Shock acceleration of high-energy cosmic rays: the importance of the magnetic-field angle, J. Phys. Conf. Ser. 47 160
R.J. Protheroe and T. Stanev, 1999 Cut-offs and pile-ups in shock acceleration spectra, Astropart. Phys. 10 185 [astro-ph/9808129]
L. Pasquali, M.H. Reno and I. Sarcevic, 1999 Lepton fluxes from atmospheric charm, Phys. Rev. D 59 034020 [hep-ph/9806428]
P.M. Nadolsky et al., 2008 Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 013004 [0802.0007]
R. Enberg, M.H. Reno and I. Sarcevic, 2008 Prompt neutrino fluxes from atmospheric charm, Phys. Rev. D 78 043005 [0806.0418]
E.V. Bugaev et al., 1998 Atmospheric muon flux at sea level, underground and underwater, Phys. Rev. D 58 054001 [hep-ph/9803488]
Planck collaboration, P.A.R. Ade et al., 2014 Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 A16 [1303.5076]
O. Cucciati et al., 2012 The star formation rate density and dust attenuation evolution over 12 Gyr with the VVDS surveys, Astron. Astrophys. 539 A31 [1109.1005]
G.J. Mathews, J. Hidaka, T. Kajino and J. Suzuki, 2014 Supernova relic neutrinos and the supernova rate problem: analysis of uncertainties and detectability of ONeMg and failed supernovae, Astrophys. J. 790 115 [1405.0458]
A.M. Hopkins and J.F. Beacom, 2006 On the normalisation of the cosmic star formation history, Astrophys. J. 651 142 [astro-ph/0601463]
S. Horiuchi et al., 2011 The cosmic core-collapse supernova rate does not match the massive-star formation rate, Astrophys. J. 738 154 [1102.1977]
P. Gondolo, G. Ingelman and M. Thunman, 1996 Charm production and high-energy atmospheric muon and neutrino fluxes, Astropart. Phys. 5 309 [hep-ph/9505417]
Particle Data Group collaboration, J. Beringer et al., 2012 Review of particle physics, Phys. Rev. D 86 010001
IceCube collaboration, M.G. Aartsen et al., 2015 Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube, Phys. Rev. D 91 022001 [1410.1749]
IceCube collaboration, M.G. Aartsen et al., Searches for extended and point-like neutrino sources with four years of IceCube data, [1406.6757]