Bhattacharya, Atri ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Gandhi, Raj
Gupta, Aritra
Language :
English
Title :
The Direct Detection of Boosted Dark Matter at High Energies and PeV events at IceCube
Publication date :
2015
Journal title :
Journal of Cosmology and Astroparticle Physics
eISSN :
1475-7516
Publisher :
Institute of Physics Publishing (IOP), Bristol, United Kingdom
A. Ibarra, Neutrinos and dark matter, talk at Neutrino 2014, Boston U.S.A. (2014).
D. Cline, A brief status of the direct search for WIMP dark matter, arXiv:1406.5200.
A. Kusenko and L.J. Rosenberg, Working group report: non-WIMP dark matter, arXiv:1310.8642.
K.M. Nollett and G. Steigman, BBN and the CMB constrain neutrino coupled light WIMPs, arXiv:1411.6005.
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076].
D. Hooper, F.S. Queiroz and N.Y. Gnedin, Non-thermal dark matter mimicking an additional neutrino species in the early universe, Phys. Rev. D 85 (2012) 063513 [arXiv:1111.6599].
D.Z. Freedman, Coherent neutrino nucleus scattering as a probe of the weak neutral current, Phys. Rev. D 9 (1974) 1389.
J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458].
K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615.
R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, Ultrahigh-energy neutrino interactions, Astropart. Phys. 5 (1996) 81 [hep-ph/9512364].
R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, Neutrino interactions at ultrahigh-energies, Phys. Rev. D 58 (1998) 093009 [hep-ph/9807264].
A. Bhattacharya et al., in preparation.
K. Murase and J.F. Beacom, Constraining very heavy dark matter using diffuse backgrounds of neutrinos and cascaded gamma rays, JCAP 10 (2012) 043 [arXiv:1206.2595].
C. Rott, K. Kohri and S.C. Park, Superheavy dark matter and IceCube neutrino signals: bounds on decaying dark matter, arXiv:1408.4575.
K. Ichiki, M. Oguri and K. Takahashi, WMAP constraints on decaying cold dark matter, Phys. Rev. Lett. 93 (2004) 071302 [astro-ph/0403164].
P.S. Bhupal Dev, A. Mazumdar and S. Qutub, Constraining non-thermal and thermal properties of dark matter, Front. Phys. 2 (2014) 26 [arXiv:1311.5297].
A. Del Popolo, Dark matter and structure formation a review, Astron. Rep. 51 (2007) 169 [arXiv:0801.1091].
A. Esmaili, A. Ibarra and O.L.G. Peres, Probing the stability of superheavy dark matter particles with high-energy neutrinos, JCAP 11 (2012) 034 [arXiv:1205.5281].
Y. Bai, R. Lu and J. Salvado, Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin, arXiv:1311.5864.
A. Alves, S. Profumo and F.S. Queiroz, The dark Z' portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281].
D. Hooper, Z' mediated dark matter models for the galactic center gamma-ray excess, Phys. Rev. D 91 (2015) 035025 [arXiv:1411.4079].
H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241].
M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light Z' bosons at the Tevatron, Phys. Rev. D 83 (2011) 115013 [arXiv:1103.6035].
M. Kachelriess, P.D. Serpico and M.A. Solberg, On the role of electroweak bremsstrahlung for indirect dark matter signatures, Phys. Rev. D 80 (2009) 123533 [arXiv:0911.0001].
IceCube collaboration, M.G. Aartsen et al., Evidence for high-energy extraterrestrial neutrinos at the IceCube detector, Science 342 (2013) 1242856 [arXiv:1311.5238].
IceCube collaboration, M.G. Aartsen et al., Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett. 113 (2014) 101101 [arXiv:1405.5303].
ANTARES collaboration, S. Adrian-Martinez et al., Searches for point-like and extended neutrino sources close to the galactic centre using the ANTARES neutrino telescope, Astrophys. J. 786 (2014) L5 [arXiv:1402.6182].
V. Scherini, Updated results on ultra-high energy neutrinos with the Pierre Auger observatory, PoS (Neutel 2013) 058.
KM3NeT collaboration, A. Margiotta, Status of the KM3NeT project, 2014 JINST 9 C04020 [arXiv:1408.1132].
J.F. Beacom and J. Candia, Shower power: isolating the prompt atmospheric neutrino flux using electron neutrinos, JCAP 11 (2004) 009 [hep-ph/0409046].
A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, The Glashow resonance at IceCube: signatures, event rates and pp vs. pγ interactions, JCAP 10 (2011) 017 [arXiv:1108.3163].
V. Barger et al., Glashow resonance as a window into cosmic neutrino sources, Phys. Rev. D 90 (2014) 121301 [arXiv:1407.3255].
A.M. Taylor, S. Gabici and F. Aharonian, Galactic halo origin of the neutrinos detected by IceCube, Phys. Rev. D 89 (2014) 103003 [arXiv:1403.3206].
M. Ahlers and K. Murase, Probing the galactic origin of the IceCube excess with gamma-rays, Phys. Rev. D 90 (2014) 023010 [arXiv:1309.4077].
S. Razzaque, The galactic center origin of a subset of IceCube neutrino events, Phys. Rev. D 88 (2013) 081302 [arXiv:1309.2756].
C. Lunardini, S. Razzaque, K.T. Theodoseau and L. Yang, Neutrino events at IceCube and the Fermi bubbles, Phys. Rev. D 90 (2014) 023016 [arXiv:1311.7188].
M. Kachelrieß and S. Ostapchenko, Neutrino yield from galactic cosmic rays, Phys. Rev. D 90 (2014) 083002 [arXiv:1405.3797].
D.B. Fox, K. Kashiyama and P. Mészarós, Sub-PeV neutrinos from TeV unidentified sources in the galaxy, Astrophys. J. 774 (2013) 74 [arXiv:1305.6606].
M.C. Gonzalez-Garcia, F. Halzen and V. Niro, Reevaluation of the prospect of observing neutrinos from galactic sources in the light of recent results in gamma ray and neutrino astronomy, Astropart. Phys. 57-58 (2014) 39 [arXiv:1310.7194].
V.S. Berezinsky, P. Blasi and V.S. Ptuskin, Clusters of galaxies as a storage room for cosmic rays, Astrophys J. 487 (1997) 529 [astro-ph/9609048].
A. Loeb and E. Waxman, The cumulative background of high energy neutrinos from starburst galaxies, JCAP 05 (2006) 003 [astro-ph/0601695].
K. Murase, M. Ahlers and B.C. Lacki, Testing the hadronuclear origin of PeV neutrinos observed with IceCube, Phys. Rev. D 88 (2013) 121301 [arXiv:1306.3417].
H.-N. He, T. Wang, Y.-Z. Fan, S.-M. Liu and D.-M. Wei, Diffuse PeV neutrino emission from ultraluminous infrared galaxies, Phys. Rev. D 87 (2013) 063011 [arXiv:1303.1253].
F.W. Stecker, C. Done, M.H. Salamon and P. Sommers, High-energy neutrinos from active galactic nuclei, Phys. Rev. Lett. 66 (1991) 2697 [Erratum ibid. 69 (1992) 2738].
F.W. Stecker, PeV neutrinos observed by IceCube from cores of active galactic nuclei, Phys. Rev. D 88 (2013) 047301 [arXiv:1305.7404].
E. Waxman and J.N. Bahcall, High-energy neutrinos from cosmological gamma-ray burst fireballs, Phys. Rev. Lett. 78 (1997) 2292 [astro-ph/9701231].
K. Murase and K. Ioka, TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars, Phys. Rev. Lett. 111 (2013) 121102 [arXiv:1306.2274].
K. Murase, S. Inoue and S. Nagataki, Cosmic rays above the second knee from clusters of galaxies and associated high-energy neutrino emission, Astrophys. J. 689 (2008) L105 [arXiv:0805.0104].
A. Loeb and E. Waxman, The cumulative background of high energy neutrinos from starburst galaxies, JCAP 05 (2006) 003 [astro-ph/0601695].
B. Feldstein, A. Kusenko, S. Matsumoto and T.T. Yanagida, Neutrinos at IceCube from heavy decaying dark matter, Phys. Rev. D 88 (2013) 015004 [arXiv:1303.7320].
A. Esmaili and P.D. Serpico, Are IceCube neutrinos unveiling PeV-scale decaying dark matter?, JCAP 11 (2013) 054 [arXiv:1308.1105].
J. Zavala, Galactic PeV neutrinos from dark matter annihilation, Phys. Rev. D 89 (2014) 123516 [arXiv:1404.2932].
A. Bhattacharya, M.H. Reno and I. Sarcevic, Reconciling neutrino flux from heavy dark matter decay and recent events at IceCube, JHEP 06 (2014) 110 [arXiv:1403.1862].
B. Audren, J. Lesgourgues, G. Mangano, P.D. Serpico and T. Tram, Strongest model-independent bound on the lifetime of dark matter, JCAP 12 (2014) 028 [arXiv:1407.2418].
M. Ahlers and F. Halzen, Pinpointing extragalactic neutrino sources in light of recent IceCube observations, Phys. Rev. D 90 (2014) 043005 [arXiv:1406.2160].
J.K. Becker, P.L. Biermann and W. Rhode, A source property based estimate of the neutrino flux from blazars and steep spectrum sources, in International Cosmic Ray Conference 5, Pune India (2005), pg. 9.
P. Gondolo, G. Ingelman and M. Thunman, Charm production and high-energy atmospheric muon and neutrino fluxes, Astropart. Phys. 5 (1996) 309 [hep-ph/9505417].
Y. Ema, R. Jinno and T. Moroi, Cosmic-ray neutrinos from the decay of long-lived particle and the recent IceCube result, Phys. Lett. B 733 (2014) 120 [arXiv:1312.3501].
L.A. Anchordoqui et al., End of the cosmic neutrino energy spectrum, Phys. Lett. B 739 (2014) 99 [arXiv:1404.0622].
K.C.Y. Ng and J.F. Beacom, Cosmic neutrino cascades from secret neutrino interactions, Phys. Rev. D 90 (2014) 065035 [arXiv:1404.2288].
F.W. Stecker and S.T. Scully, Propagation of superluminal PeV IceCube neutrinos: a high energy spectral cutoff or new constraints on Lorentz invariance violation, Phys. Rev. D 90 (2014) 043012 [arXiv:1404.7025].
J.G. Learned and T.J. Weiler, A relational argument for a ~PeV neutrino energy cutoff, arXiv:1407.0739.