[en] Recent work on black-box polynomial nonlinear state-space modeling for hysteresis identification has provided promising results, but struggles with a large number of parameters due to the use of multivariate polynomials. This drawback is tackled in the current paper by applying a decoupling approach that results in a more parsimonious representation involving univariate polynomials. This work is carried out numerically on input-output data generated by a Bouc-Wen hysteretic model and follows up on earlier work of the authors. The current article discusses the polynomial decoupling approach and explores the selection of the number of univariate polynomials with the polynomial degree. We have found that the presented decoupling approach is able to reduce the number of parameters of the full nonlinear model up to about 50%, while maintaining a comparable output error level.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Esfahani, Alireza; Vrije Universiteit Brussel - VUB > ELEC Department
Dreesen, Philippe; Vrije Universiteit Brussel - VUB > ELEC Department
Tiels, Koen; Vrije Universiteit Brussel - VUB > ELEC Department
Noël, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Schoukens, Johan; Vrije Universiteit Brussel - VUB > ELEC Department
Language :
English
Title :
Parameter reduction in nonlinear state-space identification of hysteresis
Oh, J., Drincic, B., Bernstein, D.S., Nonlinear feedback models of hysteresis (2009) IEEE Control Syst., 29 (1), pp. 100-119
Bernstein, D., Ivory ghost [ask the experts] (2007) IEEE Control Syst., 27 (5), pp. 16-17
Hassani, V., Tjahjowidodo, T., Do, T.N., A survey on hysteresis modeling, identification and control (2014) Mech. Syst. Signal Process., 49 (1), pp. 209-233
Ikhouane, F., Rodellar, J., Systems with Hysteresis Analysis, Identification and Control Using the Bouc-Wen Model (2007), John Wiley & Sons
Noël, J.-P., Esfahani, A.F., Kerschen, G., Schoukens, J., A nonlinear state-space approach to hysteresis identification (2017) Mech. Syst. Signal Process., 84, pp. 171-184
Worden, K., Wong, C., Parlitz, U., Hornstein, A., Engster, D., Tjahjowidodo, T., Al-Bender, F., Fassois, S., Identification of pre-sliding and sliding friction dynamics: grey box and black-box models (2007) Mech. Syst. Signal Process., 21 (1), pp. 514-534
Worden, K., Manson, G., On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification (2012) Mech. Syst. Signal Process., 29, pp. 201-212
Worden, K., Becker, W., On the identification of hysteretic systems. Part II: Bayesian sensitivity analysis and parameter confidence (2012) Mech. Syst. Signal Process., 29, pp. 213-227
Worden, K., Hensman, J.J., Parameter estimation and model selection for a class of hysteretic systems using Bayesian inference (2012) Mech. Syst. Signal Process., 32, pp. 153-169
Al Janaideh, M., Rakheja, S., Su, C.-Y., An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control (2011) IEEE/ASME Trans. Mech., 16 (4), pp. 734-744
Hedegärd, M., Wik, T., Non-parametric convex identification of extended generalized Prandtl-Ishlinskii models (2014) Automatica, 50 (2), pp. 465-474
Li, S., Suzuki, Y., Noori, M., Improvement of parameter estimation for non-linear hysteretic systems with slip by a fast Bayesian bootstrap filter (2004) Int. J. Non-linear Mech., 39 (9), pp. 1435-1445
Billings, S.A., Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-temporal Domains (2013), John Wiley & Sons
Schön, T.B., Wills, A., Ninness, B., System identification of nonlinear state-space models (2011) Automatica, 47 (1), pp. 39-49
Pintelon, R., Schoukens, J., System Identification: A Frequency Domain Approach (2012), John Wiley & Sons
Schoukens, J., Pintelon, R., Rolain, Y., Mastering System Identification in 100 Exercises (2012), John Wiley & Sons
Nelles, O., Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models (2013), Springer Science & Business Media
Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J., Pintelon, R., Identification of nonlinear systems using polynomial nonlinear state space models (2010) Automatica, 46, pp. 647-656
Marconato, A., Sjöberg, J., Suykens, J.A.K., Schoukens, J., Improved initialization for nonlinear state-space modeling (2014) IEEE Trans. Instrum. Meas., 63, pp. 972-980
Xie, S., Zhang, Y., Chen, C., Zhang, X., Identification of nonlinear hysteretic systems by artificial neural network (2013) Mech. Syst. Signal Process., 34 (1), pp. 76-87
Dreesen, P., Ishteva, M., Schoukens, J., Decoupling multivariate polynomials using first-order information and tensor decompositions (2015) SIAM J. Matrix Anal. Appl., 36 (2), pp. 864-879
Carroll, J.D., Chang, J.-J., Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition (1970) Psychrometrika, 35, pp. 283-319
Harshman, R.A., Foundations of the PARAFAC procedure: models and conditions for an “explanatory multi-modal factor analysis (1970) UCLA Work. Papers Phonet., 16, pp. 1-84
Kolda, T.G., Bader, B.W., Tensor decompositions and applications (2009) SIAM Rev., 51 (3), pp. 455-500
Fakhrizadeh Esfahani, A., Dreesen, P., Tiels, K., Noël, J.-P., Schoukens, J., Polynomial state-space model decoupling for the identication of hysteretic systems (2017), pp. 466-471. , in: 20th IFAC World Congress, Toulouse, France
Bouc, R., Forced vibrations of a mechanical system with hysteresis (1967), Proceedings of the 4th Conference on Nonlinear Oscillations, Prague, Czechoslovakia
Wen, Y.-K., Method for random vibration of hysteretic systems (1976) J. Eng. Mech. Div., 102 (2), pp. 249-263
Noël, J.P., Schoukens, M., Hysteretic benchmark with a dynamic nonlinearity (2017), pp. 6-13. , Workshop on Nonlinear System Identification Benchmarks, April 24–26, Brussels, Belgium
Paduart, J., Schoukens, J., Pintelon, R., Coen, T., Nonlinear state space modelling of multivariable systems (2006) IFAC Proc. Vol., 39 (1), pp. 565-569
Paduart, J., Identification of Nonlinear Systems Using Polynomial Nonlinear State Space Models (2007), Ph.D. thesis Vrije Universiteit Brussel (VUB)
Fliess, M., Normand-Cyrot, D., On the approximation of nonlinear systems by some simple state-space models (1982) IFAC Proc. Vol., 15 (4), pp. 511-514
Van Mulders, A., Vanbeylen, L., Comparison of some initialisation methods for the identification of nonlinear state-space models (2013), pp. 807-811. , in: IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN
Van Mulders, A., Vanbeylen, L., Schoukens, J., Robust optimization method for the identification of nonlinear state-space models (2012), pp. 1423-1428. , in: IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Graz, Austria
Pintelon, R., Frequency-domain subspace system identification using non-parametric noise models (2002) Automatica, 38, pp. 1295-1311
Van Overschee, P., De Moor, B., Subspace Identification for Linear Systems: Theory–Implementation–Applications (2012), Springer Science & Business Media
Levenberg, K., A method for the solution of certain non-linear problems in least squares (1944) Quart. Appl. Math., 2 (2), pp. 164-168
Marquardt, D., An algorithm for least-squares estimation of nonlinear parameters (1963) SIAM J. Appl. Math., 11, pp. 431-441
Kyprianou, A., Worden, K., Panet, M., Identification of hysteretic systems using the differential evolution algorithm (2001) J. Sound Vib., 248 (2), pp. 289-314
Newmark, N.M., A method of computation for structural dynamics (1959) J. Eng. Mech. Div., 85 (3), pp. 67-94
Géradin, M., Rixen, D.J., Mechanical Vibrations: Theory and Application to Structural Dynamics (2014), John Wiley & Sons
Relan, R., Tiels, K., Marconato, A., Identifying an unstructured flexible nonlinear model for the cascaded water-tanks benchmark: Capabilities and short-comings (2016), Workshop on Nonlinear System Identification Benchmarks, April 25–27, Brussels, Belgium
Courant, R., Hilbert, D., (1966) Methods of Mathematical Physics, 1. , Cambridge University Press Archive
Janczak, A., (2004) Identification of Nonlinear Systems Using Neural Networks and Polynomial Models: A Block-Oriented Approach, 310. , Springer Science & Business Media
Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L., http://www.tensorlab.net, Tensorlab 3.0, March 2016. <>
Svensson, A., Schön, T.B., A flexible state-space model for learning nonlinear dynamical systems (2017) Automatica, 80, pp. 189-199
Tobar, F., Djurić, P.M., Mandic, D.P., Unsupervised state-space modeling using reproducing kernels (2015) IEEE Trans. Signal Process., 63 (19), pp. 5210-5221
Ghahramani, Z., Roweis, S.T., Learning nonlinear dynamical systems using an EM algorithm (1999), pp. 431-437. , Advances in Neural Information Processing Systems
Frigola, R., Lindsten, F., Schön, T.B., Rasmussen, C.E., Identification of Gaussian process state-space models with particle stochastic approximation em (2014) IFAC Proc. Vol., 47 (3), pp. 4097-4102
Münker, T., Heinz, T., Nelles, O., Regularized local FIR model networks for a Bouc-Wen and a Wiener-Hammerstein system (2017), Workshop on Nonlinear System Identification Benchmarks, April 24–26, Brussels, Belgium
Westwick, D., Hollander, G., Schoukens, J., The decoupled polynomial NARX model: Parameter reduction and structural insights for the Bouc-Wen benchmark (2017), Workshop on Nonlinear System Identification Benchmarks, April 24–26, Brussels, Belgium
Brunot, M., Janot, A., Carrillo, F., Continuous-time nonlinear systems identification with output error method based on derivative-free optimisation (2017), pp. 460-465. , 20th IFAC World Congress, Toulouse, France
Belz, J., Münker, T., Heinz, T., Kampmann, G., Nelles, O., Automatic modeling with local model networks for benchmark processes (2017), pp. 472-477. , 20th IFAC World Congress, Toulouse, France
Bajrić, A., System identification of a linearized hysteretic system using covariance driven stochastic subspace identification (2016), Workshop on Nonlinear System Identification Benchmarks, April 25–27, Brussels, Belgium
Gaasbeek, R., Mohan, R., Control-focused identification of hysteric systems (2016), Workshop on Nonlinear System Identification Benchmarks, April 25–27, Brussels, Belgium
Schoukens, M., Griesing Scheiwe, F., Modeling nonlinear systems using a Volterra feedback model (2016), in: Workshop on Nonlinear System Identification Benchmarks, April 25–27, Brussels, Belgium