[en] Raman spectrometers will be utilized on two Mars rover missions, ExoMars and Mars 2020, in the near future, to search for evidence of life and habitable geological niches on Mars. Carotenoid pigments are recognized target biomarkers, and as they are highly active in Raman spectroscopy, they can be readily used to characterize the capabilities of space representative instrumentation. As part of the preparatory work being performed for the ExoMars mission, a gypsum crust colonized by microorganisms was interrogated with commercial portable Raman instruments and a flight representative Raman laser spectrometer. Four separate layers, each exhibiting different coloration resulting from specific halophilic microorganism activities within the gypsum crust, were studied by using two excitation wavelengths: 532 and 785 nm. Raman or fluorescence data were readily obtained during the present study. Gypsum, the main constituent of the crust, was detected with both excitation wavelengths, while the resonance Raman signal associated with carotenoid pigments was only detected with a 532 nm excitation wavelength. The fluorescence originating from bacteriochlorophyll a was found to overwhelm the Raman signal for the layer colonized by sulfur bacteria when interrogated with a 785 nm excitation wavelength. Finally, it was demonstrated that portable instruments and the prototype were capable of detecting a statistically significant difference in band positions of carotenoid signals between the sample layers.
Disciplines :
Chemistry
Author, co-author :
Malherbe, Cédric ; Université de Liège > Département de chimie (sciences) > Chimie analytique inorganique
Hutchinson, I. B.; University of Leicester > Physics and Astronomy
McHugh, M.; University of Leicester > Physics and Astronomy
Ingley, R.; University of Leicester > Physics and Astronomy
Jehlicka, J; Charles University in Prague > Geology
Edwards, H.G.M; University of Leicester > Physics and Astronomy
Language :
English
Title :
Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers
Publication date :
April 2017
Journal title :
Astrobiology
ISSN :
1531-1074
eISSN :
1557-8070
Publisher :
Mary Ann Liebert, Inc., New Rochelle, United States - New York
Baglioni, P., Fisackerly, R., Gardini, B., Gianfiglio, G., Pradier, A.L., Santovincenzo, A., Vago, J.L., and Van Winnendael, M. (2006) The Mars exploration plans of ESA. IEEE Robot Autom Mag 13:83-89.
Culka, A., Osterrothova, K., Hutchinson, I., Ingley, R., McHugh, M., Oren, A., Edwards, H.G.M., and Jehlicka, J. (2014) Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agencys prototype analysis. Philos Transact A Math Phys Eng Sci 372, doi:10.1098/rsta.2014.0203.
de Oliveira, V.E., Castro, H.V., Edwards, H.G.M., and de Oliveira, L.F.C. (2010) Carotenes and carotenoids in natural biological samples: A Raman spectroscopic analysis. J Raman Spectrosc 41:642-650.
Edwards, H.G.M., Hutchinson, I.B., Ingley, R., Parnell, J., Vítek, P., and Jehlicka, J. (2013) Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13:543-549.
Edwards, H.G.M., Hutchinson, I.B., Ingley, R., and Jehlicka, J. (2014) Biomarkers and their Raman spectroscopic signatures: A spectral challenge for analytical astrobiology. Philos Transact A Math Phys Eng Sci 372, doi:10.1098/rsta.2014 .0193.
ExoMars mission. (2015) ExoMars mission 2018. European Space Agency, Paris. Available online at http://exploration.esa.int/mars/48088-mission-overview
Ferraro, J.R., Nakamoto, K., and Brown, C.W. (2003) Introductory Raman Spectroscopy, 2nd ed., edited by J.R. Ferraro, K. Nakamoto, and C.W. Brown, Academic Press, San Diego.
Gendrin, A., Mangold, N., Bibring, J.-P., Langevin, Y., Gondet, B., Poulet, F., Bonello, G., Quantin, C., Mustard, J., Arvidson, R., and LeMouélic, S. (2005) Sulfates in martian layered terrains: The OMEGA/Mars Express view. Science 307:1587-1591.
Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., Milliken, R., Conrad, P.G., Des Marais, D., Farmer, J., Siebach, K., Calef, F., III, Hurowitz, J., McLennan, S.M., Ming, D., Vaniman, D., Crisp, J., Vasavada, A., Edgett, K.S., Malin, M., Blake, D., Gellert, R., Mahaffy, P., Wiens, R.C., Maurice, S., Grant, J.A., Wilson, S., Anderson, R.C., Beegle, L., Arvidson, R., Hallet, B., Sletten, R.S., Rice, M., Bell, J., III, Griffes, J., Ehlmann, B., Anderson, R.B., Bristow, T.F., Dietrich, W.E., Dromart, G., Eigenbrode, J., Fraeman, A., Hardgrove, C., Herkenhoff, K., Jandura, L., Kocurek, G., Lee, S., Leshin, L.A., Leveille, R., Limonadi, D., Maki, J., McCloskey, S., Meyer, M., Minitti, M., Newsom, H., Oehler, D., Okon, A., Palucis, M., Parker, T., Rowland, S., Schmidt, M., Squyres, S., Steele, A., Stolper, E., Summons, R., Treiman, A., Williams, R., Yingst, A.; MSL Science Team. (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, doi:10.1126/science.1242777.
Harris, L.V., McHugh, M., Hutchinson, I.B., Ingley, R., Malherbe, C., Parnell, J., Olcott Marshall, A., and Edwards, H.G.M. (2015) Avoiding misidentification of bands in planetary Raman spectra. J Raman Spectrosc 46:863-872.
Hutchinson, I.B., Ingley, R., Edwards, H.G.M., Harris, L., McHugh, M., Malherbe, C., and Parnell, J. (2014) Raman spectroscopy on Mars: identification of geological and biogeological signatures in martian analogues using miniaturized Raman spectrometers. Philos Transact A Math Phys Eng Sci 372, doi:10.1098/rsta.2014.0204.
Jehlicka, J. and Oren, A. (2013a) Raman spectroscopy in halophile research. Front Microbiol 4, doi:10.3389/fmicb.2013.00380.
Jehlicka, J. and Oren, A. (2013b) Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J Raman Spectrosc 43:1275-1280.
Jehlicka, J., Edwards, H.G.M., and Oren, A. (2014a) Raman spectroscopy of microbial pigments. Appl Environ Microbiol 80:3286-3295.
Jehlicka, J., Edwards, H.G.M., Osterrothova, K., Novotna, J., Nedbalova, L., Kopecky, J., Nemec, I., and Oren, A. (2014b) Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. Philos Transact A Math Phys Eng Sci 372, doi:10.1098/rsta.2014.0199.
Jorge Villar, S.E. and Edwards, H.G.M. (2006) Raman spectroscopy in astrobiology. Anal Bioanal Chem 384:100-113.
Kolber, Z.S. (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492-2495.
Lopez-Reyes, G., Rull, F., Venegas, G., Westall, F., Foucher, F., Bost, N., Sanz, A., Catalá-Espí, A., Vegas, A., Hermosilla, I., Sansano, A., and Medina, J. (2013) Analysis of the scientific capabilities of the ExoMars Raman laser spectrometer instrument. European Journal of Mineralogy 25:721-733.
Marshall, C.P., Leuko, S., Coyle, C.M., Walter, M.R., Burns, B.P., and Neilan, B.A. (2007) Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology 7:631-643.
McCreery, R.L. (2001) Raman spectroscopy for chemical analysis. Meas Sci Technol 12:653-654.
Merlin, J.C. (1985) Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl Chem 57:785-792.
Moynihan, H.A. and OHare, I.P. (2002) Spectroscopic characterisation of the monoclinic and orthorhombic forms of paracetamol. Int J Pharm 247:179-185.
NASA Mars 2020. (2014) NASA announces Mars 2020 rover payload to explore the Red Planet as never before. NASAs Mars Exploration Program, Washington, DC. Available online at http://nasa.gov/press/2014/july/nasa-Announces-mars-2020-rover-payload-To-explore-The-red-planet-As-never-before
Oren, A. (2014) Halophilic archaea on Earth and in space: growth and survival under extreme conditions. Philos Transact A Math Phys Eng Sci 372, doi:10.1098/rsta.2014.0194.
Oren, A. and Rodriguez-Valera, F. (2001) The contribution of halophilic bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123-130.
Oren, A., Sørensen, K.B., Canfield, D.E., Teske, A.P., Ionescu, D., Lipski, A., and Altendorf, K. (2009) Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626: 15-26.
Rull, F., Sansano, A., Díaz, E., Canora, C.P., Moral, A.G., Tato, C., Colombo, M., Belenguer, T., Fernández, M., Manfredi, J.A.R., Canchal, R., Dávila, B., Jiménez, A., Gallego, P., Ibarmia, S., Prieto, J.A.R., Santiago, A., Pla, J., Ramos, G., Díaz, C., and González, C. (2011) ExoMars Raman laser spectrometer for ExoMars. Proc SPIE 8152, doi:10.1117/12.896787.
Smith, E. and Dent, G. (2004) Modern Raman Spectroscopy: A Practical Approach, John Wiley & Sons, Chichester, UK.
Telfer, A. (2005) Too much light? How [small beta]-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4:950-956.
Vandenabeele, P., Jehlicka, J., Vítek, P., and Edwards, H.G.M. (2012) On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planet Space Sci 62:48-54.
Wang, A. and Zhou, Y. (2014) Experimental comparison of the pathways and rates of the dehydration of Al-, Fe-, Mg-And Casulfates under Mars relevant conditions. Icarus 234:162-173.
Withnall, R., Chowdhry, B.Z., Silver, J., Edwards, H.G.M., and De Oliveira, L.F.C. (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A Mol Biomol Spectrosc 59:2207-2212.