Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release
Haji Mansor, Muhammad; Najberg, Mathie; Contini, Aurélienet al.
2018 • In European Journal of Pharmaceutics and Biopharmaceutics, 125, p. 38-50
Haji Mansor, Muhammad; University of Angers, University of Nantes, CRCINA INSERM, France > University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Najberg, Mathie; University of Angers, University of Nantes, CRCINA INSERM, France > Universidade de Santiago de Compostela, Departamento de Farmacologia, Farmacia y Tecnología Farmacéutica, R&D Pharma Group, Spain
Contini, Aurélien; University of Angers, University of Nantes, CRCINA INSERM, France
Alvarez-Lorenzo, Carmen; Universidade de Santiago de Compostela, Departamento de Farmacologia, Farmacia y Tecnología Farmacéutica, R&D Pharma Group, Spain
Garcion, Emmanuel; University of Angers, University of Nantes, CRCINA INSERM, France
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Boury, Frank; University of Angers, CRCINA INSERM-UMR1232 Cancer and Immunology Research Centre, France
Language :
English
Title :
Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release
Publication date :
April 2018
Journal title :
European Journal of Pharmaceutics and Biopharmaceutics
ISSN :
0939-6411
eISSN :
1873-3441
Publisher :
Elsevier B.V.
Volume :
125
Pages :
38-50
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FEDER - Fonds Européen de Développement Régional The Erasmus Mundus Joint Doctorate "Nanofar" French Region "Pays de la Loire" Spanish Ministry of Economy and Competitiveness (Mineco) French Ministry of Higher Education and Research
De La Luz Sierra, M., Yang, F., Narazaki, M., Salvucci, O., Davis, D., Yarchoan, R., Zhang, H.H., Fales, H., Tosato, G., Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 103 (2004), 2452–2459, 10.1182/blood-2003-08-2857.
Janowski, M., Functional diversity of SDF-1 splicing variants. Cell Adh. Migr. 3 (2009), 243–249.
Sugiyama, T., Kohara, H., Noda, M., Nagasawa, T., Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 25 (2006), 977–988, 10.1016/j.immuni.2006.10.016.
Kitaori, T., Ito, H., Schwarz, E.M., Tsutsumi, R., Yoshitomi, H., Oishi, S., Nakano, M., Fujii, N., Nagasawa, T., Nakamura, T., Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60 (2009), 813–823, 10.1002/art.24330.
Deng, J., Zou, Z.M., Zhou, T.L., Su, Y.P., Ai, G.P., Wang, J.P., Xu, H., Dong, S.W., Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue. Neurol. Sci. 32 (2011), 641–651, 10.1007/s10072-011-0608-2.
Kimura, Y., Komaki, M., Iwasaki, K., Sata, M., Izumi, Y., Morita, I., Recruitment of bone marrow-derived cells to periodontal tissue defects. Front. Cell Dev. Biol. 2 (2014), 1–6, 10.3389/fcell.2014.00019.
Lévesque, J.-P., Henry, J., Takamatsu, Y., Simmons, P.J., Bendall, L.J., Disruption of the CXCR4/CXCL12 chemotactic interaction during. J. Clin. Invest. 110 (2003), 187–196, 10.1172/JCI200315994.Introduction.
Marquez-Curtis, L., Jalili, A., Deiteren, K., Shirvaikar, N., Lambeir, A.-M., Janowska-Wieczorek, A., Carboxypeptidase M expressed by human bone marrow cells cleaves the C-terminal lysine of stromal cell-derived factor-1α: another player in hematopoietic stem/progenitor cell mobilization?. Stem Cells. 26 (2008), 1211–1220, 10.1634/stemcells.2007-0725.
Roccaro, A.M., Sacco, A., Purschke, W.G., Moschetta, M., Maasch, C., Zboralski, D., Zöllner, S., Vonhoff, S., Maiso, P., Reagan, M.R., Lonardi, S., Ungari, M., Eulberg, D., Kruschinski, A., Vater, A., Rossi, G., Ghobrial, I.M., Therapy 9 (2014), 118–128, 10.1016/j.celrep.2014.08.042.SDF-1.
Matsusue, R., Kubo, H., Hisamori, S., Okoshi, K., Takagi, H., Hida, K., Nakano, K., Itami, A., Kawada, K., Nagayama, S., Sakai, Y., Hepatic stellate cells promote liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis. Ann. Surg. Oncol. 16 (2009), 2645–2653, 10.1245/s10434-009-0599-x.
Zhang, J.-P., Lu, W.-G., Ye, F., Chen, H.-Z., Zhou, C.-Y., Xie, X., Study on CXCR4/SDF-1alpha axis in lymph node metastasis of cervical squamous cell carcinoma. Int. J. Gynecol. Cancer. 17 (2007), 478–483, 10.1111/j.1525-1438.2007.00786.x.
Stevenson, C.B., Ehtesham, M., McMillan, K.M., Valadez, J.G., Edgeworth, M.L., Price, R.R., Abel, T.W., Mapara, K.Y., Thompson, R.C., CXCR4 expression is elevated in glioblastoma multiforme and correlates with an increase in intensity and extent of peritumoral T2-weighted magnetic resonance imaging signal abnormalities. Neurosurgery 63 (2008), 560–569, 10.1227/01.NEU.0000324896.26088.EF.
Zhao, B.-C., Wang, Z.-J., Mao, W.-Z., Ma, H.-C., Han, J.-G., Zhao, B., Xu, H.-M., CXCR4/SDF-1 axis is involved in lymph node metastasis of gastric carcinoma. World J. Gastroenterol. 17 (2011), 2389–2396, 10.3748/wjg.v17.i19.2389.
Burger, M., Glodek, A., Hartmann, T., Schmitt-Gräff, A., Silberstein, L.E., Fujii, N., Kipps, T.J., Burger, J.A., Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, adhesion to stromal cells. Oncogene 22 (2003), 8093–8101, 10.1038/sj.onc.1207097.
Danhier, F., Ansorena, E., Silva, J.M., Coco, R., Le Breton, A., Préat, V., PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 161 (2012), 505–522, 10.1016/j.jconrel.2012.01.043.
Mainardes, R.M., Evangelista, R.C., PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int. J. Pharm. 290 (2005), 137–144, 10.1016/j.ijpharm.2004.11.027.
Song, X., Zhao, Y., Wu, W., Bi, Y., Cai, Z., Chen, Q., Li, Y., Hou, S., PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int. J. Pharm. 350 (2008), 320–329, 10.1016/j.ijpharm.2007.08.034.
Tran, M.K., Swed, A., Boury, F., Preparation of polymeric particles in CO2 medium using non-toxic solvents: formulation and comparisons with a phase separation method. Eur. J. Pharm. Biopharm. 82 (2012), 498–507, 10.1016/j.ejpb.2012.08.005.
Grabowski, N., Hillaireau, H., Vergnaud, J., Tsapis, N., Pallardy, M., Kerdine-Römer, S., Fattal, E., Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int. J. Pharm. 482 (2015), 75–83, 10.1016/j.ijpharm.2014.11.042.
Cohen-Sela, E., Chorny, M., Koroukhov, N., Danenberg, H.D., Golomb, G., A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Release 133 (2009), 90–95, 10.1016/j.jconrel.2008.09.073.
Liu, J., Qiu, Z., Wang, S., Zhou, L., Zhang, S., A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomed. Mater., 5, 2010, 65002, 10.1088/1748-6041/5/6/065002.
Bilati, U., Allémann, E., Doelker, E., Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur. J. Pharm. Biopharm. 59 (2005), 375–388, 10.1016/j.ejpb.2004.10.006.
Sánchez, A., Villamayor, B., Guo, Y., McIver, J., Alonso, M.J., Formulation strategies for the stabilization of tetanus toxoid in poly(lactide-co-glycolide) microspheres. Int. J. Pharm. 185 (1999), 255–266, 10.1016/S0378-5173(99)00178-7.
Wang, J., Chua, K.M., Wang, C.H., Stabilization and encapsulation of human immunoglobulin G into biodegradable microspheres. J. Colloid Interface Sci. 271 (2004), 92–101, 10.1016/j.jcis.2003.08.072.
Giteau, A., Venier-Julienne, M.C., Marchal, S., Courthaudon, J.L., Sergent, M., Montero-Menei, C., Verdier, J.M., Benoit, J.P., Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres. Eur. J. Pharm. Biopharm. 70 (2008), 127–136, 10.1016/j.ejpb.2008.03.006.
Mukherjee, B., Santra, K., Pattnaik, G., Ghosh, S., Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int. J. Nanomed. 3 (2008), 487–496, 10.2147/IJN.S3938.
Feczkó T., Tóth, J., Dósa, G., Gyenis, J., Optimization of protein encapsulation in PLGA nanoparticles. Chem. Eng. Process. Process Intensif. 50 (2011), 757–765, 10.1016/j.cep.2011.06.008.
Jiang, X., Lin, H., Jiang, D., Xu, G., Fang, X., He, L., Xu, M., Tang, B., Wang, Z., Cui, D., Chen, F., Geng, H., Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits. Sci. Rep., 6, 2016, 20784, 10.1038/srep20784.
Morales-Cruz, M., Flores-Fernández, G.M., Morales-Cruz, M., Orellano, E.A., Rodriguez-Martinez, J.A., Ruiz, M., Griebenow, K., Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results Pharma Sci. 2 (2012), 79–85, 10.1016/j.rinphs.2012.11.001.
Bilati, U., Allémann, E., Doelker, E., Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci. 24 (2005), 67–75, 10.1016/j.ejps.2004.09.011.
Tang, L., Azzi, J., Kwon, M., Mounayar, M., Tong, R., Yin, Q., Moore, R., Skartsis, N., Fan, T.M., Abdi, R., Cheng, J., Immunosuppressive activity of size-controlled PEG-PLGA nanoparticles containing encapsulated cyclosporine A. J. Transplant. 2012 (2012), 1–9, 10.1155/2012/896141.
EMEA, ICH guideline Q3C (R6) on impurities: guideline for residual solvents, 2003. < http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/03/WC500104258.pdf>.
Yang, A., Yang, L., Liu, W., Li, Z., Xu, H., Yang, X., Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Int. J. Pharm. 331 (2007), 123–132, 10.1016/j.ijpharm.2006.09.015.
J. Coleman, A. Lowman, Biodegradable nanoparticles for protein delivery: analysis of preparation conditions on particle morphology and protein loading, activity and sustained release properties, J. Biomater. Sci. Polym. Ed. ahead-of-p (2012) 1–23, doi: 10.1163/092050611X576648.
Dudeck, O., Jordan, O., Hoffmann, K.T., Okuducu, A.F., Tesmer, K., Kreuzer-Nagy, T., Rüfenacht, D.A., Doelker, E., Felix, R., Organic solvents as vehicles for precipitating liquid embolics: a comparative angiotoxicity study with superselective injections of swine rete mirabile. Am. J. Neuroradiol. 27 (2006), 1900–1906.
Boongird, A., Nasongkla, N., Hongeng, S., Sukdawong, N., Sa-Nguanruang, W., Larbcharoensub, N., Biocompatibility study of glycofurol in rat brains. Exp. Biol. Med. 236 (2011), 77–83, 10.1258/ebm.2010.010219.
Yoo, H.S., Park, T.G., Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA – PEG block copolymer. J. Control. Release 70 (2001), 63–70.
Morille, M., Van-Thanh, T., Garric, X., Cayon, J., Coudane, J., Noël, D., Venier-Julienne, M.C., Montero-Menei, C.N., New PLGA-P188-PLGA matrix enhances TGF-β3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells. J. Control. Release 170 (2013), 99–110, 10.1016/j.jconrel.2013.04.017.
Milner, R., Edwards, G., Streuli, C., Ffrench-Constant, C., A role in migration for the alpha V beta 1 integrin expressed on oligodendrocyte precursors. J. Neurosci. 16 (1996), 7240–7252.
Séhédic, D., Chourpa, I., Tétaud, C., Griveau, A., Loussouarn, C., Avril, S., Legendre, C., Lepareur, N., Wion, D., Hindré F., Davodeau, F., Garcion, E., Locoregional Confinement and Major Clinical Benefit of 188Re-Loaded CXCR4-Targeted Nanocarriers in an Orthotopic Human to Mouse Model of Glioblastoma. Theranostics 7 (2017), 4517–4536, 10.7150/thno.19403.
Swed, A., Cordonnier, T., Dénarnaud, A., Boyer, C., Guicheux, J., Weiss, P., Boury, F., Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium. Int. J. Pharm. 493 (2015), 357–365, 10.1016/j.ijpharm.2015.07.043.
Heurtault, B.J.P., Saulnier, P., Pech, B., Proust, J.E., A novel phase inversion-based process for the preparation of lipid nanocarrier. Pharm. Res. 19 (2002), 875–880.
Li, F., Li, S., Vert, M., Synthesis and rheological properties of polylactide/poly(ethylene glycol) multiblock copolymers. Macromol. Biosci. 5 (2005), 1125–1131, 10.1002/mabi.200500143.
Harrane, A., Leroy, A., Nouailhas, H., Garric, X., Coudane, J., Nottelet, B., PLA-based biodegradable and tunable soft elastomers for biomedical applications. Biomed. Mater., 6, 2011, 65006, 10.1088/1748-6041/6/6/065006.
Swed, A., Cordonnier, T., Dénarnaud, A., Boyer, C., Guicheux, J., Weiss, P., Boury, F., Sustained release of TGF-??1 from biodegradable microparticles prepared by a new green process in CO2 medium. Int. J. Pharm. 493 (2015), 357–365, 10.1016/j.ijpharm.2015.07.043.
Kandalam, S., Sindji, L., Delcroix, G.J.-R., Violet, F., Garric, X., André E.M., Schiller, P.C., Venier-Julienne, M.-C., des Rieux, A., Guicheux, J., Montero-Menei, C.N., Pharmacologically active microcarriers delivering BDNF within a hydrogel: novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. Acta Biomater., 2016, 10.1016/j.actbio.2016.11.030.
Mustafi, D., Smith, C.M., Makinen, M.W., Lee, R.C., Multi-block poloxamer surfactants suppress aggregation of denatured proteins. Biochim. Biophys. Acta – Gen. Subj. 1780 (2008), 7–15, 10.1016/j.bbagen.2007.08.017.
Paillard-Giteau, A., Tran, V.T., Thomas, O., Garric, X., Coudane, J., Marchal, S., Chourpa, I., Benoît, J.P., Montero-Menei, C.N., Venier-Julienne, M.C., Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique. Eur. J. Pharm. Biopharm. 75 (2010), 128–136, 10.1016/j.ejpb.2010.03.005.
James, S., McManus, J.J., Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose. J. Phys. Chem. B 116 (2012), 10182–10188, 10.1021/jp303898g.
Pirooznia, N., Hasannia, S., Lotfi, A., Ghanei, M., Encapsulation of Alpha-1 antitrypsin in PLGA nanoparticles. In Vitro characterization as an effective aerosol formulation in pulmonary diseases. J. Nanobiotechnol., 10, 2012, 20, 10.1186/1477-3155-10-20.
De Jaeghere, F., Allémann, E., Feijen, J., Kissel, T., Doelker, E., Gurny, R., Freeze-drying and lyopreservation of diblock and triblock poly(lactic acid)-poly(ethylene oxide) (PLA-PEO) copolymer nanoparticles. Pharm. Dev. Technol. 5 (2000), 473–483, 10.1081/PDT-100102031.
Honary, S., Zahir, F., Effect of zeta potential on the properties of nano – drug delivery systems – a review (Part 2). Trop. J. Pharm. Al Res. 12 (2013), 265–273, 10.4314/tjpr.v12i2.19.
Abdelwahed, W., Degobert, G., Fessi, H., Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur. J. Pharm. Biopharm. 63 (2006), 87–94, 10.1016/j.ejpb.2006.01.015.
Abdelwahed, W., Degobert, G., Stainmesse, S., Fessi, H., Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 58 (2006), 1688–1713, 10.1016/j.addr.2006.09.017.
Sameti, M., Bohr, G., Ravi Kumar, M.N.V., Kneuer, C., Bakowsky, U., Nacken, M., Schmidt, H., Lehr, C.M., Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int. J. Pharm. 266 (2003), 51–60, 10.1016/S0378-5173(03)00380-6.
Patel, S.M., Doen, T., Pikal, M.J., Determination of end point of primary drying in freeze-drying process control. AAPS PharmSciTech. 11 (2010), 73–84, 10.1208/s12249-009-9362-7.
Abdelwahed, W., Degobert, G., Fessi, H., A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. Int. J. Pharm. 309 (2006), 178–188, 10.1016/j.ijpharm.2005.10.003.
Yang, G., Gilstrap, K., Zhang, A., Xu, L.X., He, X., Collapse temperature of solutions important for lyopreservation of living cells at ambient temperature. Biotechnol. Bioeng. 106 (2010), 247–259, 10.1002/bit.22690.
De Jaeghere, F., Allémann, E., Leroux, J.C., Stevels, W., Feijen, J., Doelker, E., Gurny, R., Formulation and lyoprotection of poly(Lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and In vitro cell uptake. Pharm. Res. 16 (1999), 859–866, 10.1023/A:1018826103261.
Shamim, N., Hong, L., Hidajat, K., Uddin, M.S., Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of Bovine Serum Albumin. J. Colloid Interface Sci. 304 (2006), 1–8, 10.1016/j.jcis.2006.08.047.
Morita, T., Sakamura, Y., Horikiri, Y., Suzuki, T., Yoshino, H., Protein encapsulation into biodegradable microspheres by a novel S/O/W emulsion method using poly(ethylene glycol) as a protein micronization adjuvant. J. Control. Release 69 (2000), 435–444, 10.1016/S0168-3659(00)00326-6.
White, L.J., Kirby, G.T.S., Cox, H.C., Qodratnama, R., Qutachi, O., Rose, F.R.A.J., Shakesheff, K.M., Accelerating protein release from microparticles for regenerative medicine applications. Mater. Sci. Eng. C 33 (2013), 2578–2583, 10.1016/j.msec.2013.02.020.
Castellanos, I.J., Al-Azzam, W., Criebenow, K., Effect of the covalent modification with poly(ethylene glycol) on α-chymotrypsin stability upon encapsulation in poly(lactic-co-glycolic) microspheres. J. Pharm. Sci. 94 (2005), 327–340, 10.1002/jps.20243.
Hinds, K.D., Campbell, K.M., Holland, K.M., Lewis, D.H., Piché C.A., Schmidt, P.G., PEGylated insulin in PLGA microparticles. In vivo and in vitro analysis. J. Control. Release 104 (2005), 447–460, 10.1016/j.jconrel.2005.02.020.
Hermeling, S., Crommelin, D.J.A., Schellekens, H., Jiskoot, W., Structure-immunogenicity relationships of therapeutic proteins. Pharm. Res. 21 (2004), 897–903, 10.1023/B:PHAM.0000029275.41323.a6.
Maas, C., Hermeling, S., Bouma, B., Jiskoot, W., Gebbink, M.F.B.G., A role for protein misfolding in immunogenicity of biopharmaceuticals. J. Biol. Chem. 282 (2007), 2229–2236, 10.1074/jbc.M605984200.
Park, J., Fong, P.M., Lu, J., Russell, K.S., Booth, C.J., Saltzman, W.M., Fahmy, T.M., PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomed. Nanotechnol., Biol. Med. 5 (2009), 410–418, 10.1016/j.nano.2009.02.002.
Liu, J., Zhang, S.M., Chen, P.P., Cheng, L., Zhou, W., Tang, W.X., Chen, Z.W., Ke, C.M., Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J. Mater. Sci. Mater. Med. 18 (2007), 2205–2210, 10.1007/s10856-007-3010-0.
Xia, M., Huang, R., Witt, K.L., Southall, N., Fostel, J., Cho, M.H., Jadhav, A., Smith, C.S., Inglese, J., Portier, C.J., Tice, R.R., Austin, C.P., Compound cytotoxicity profiling using quantitative high-throughput screening. Environ. Health Perspect. 116 (2008), 284–291, 10.1289/ehp.10727.
Maupas, C., Moulari, B., Béduneau, A., Lamprecht, A., Pellequer, Y., Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells. Int. J. Pharm. 411 (2011), 136–141, 10.1016/j.ijpharm.2011.03.056.
Le Roux, G., Moche, H., Nieto, A., Benoit, J.P., Nesslany, F., Lagarce, F., Cytotoxicity and genotoxicity of lipid nanocapsules. Toxicol. Vitr. 41 (2017), 189–199, 10.1016/j.tiv.2017.03.007.
Partearroyo, M., Ostolaza, H., Surfactant-induced cell toxicity and cell lysis: a study using B16 melanoma cells. Biochem., 1990, 1323–1328, 10.1016/0006-2952(90)90399-6.