Fleming, A., On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br. J. Exp. Pathol. 10 (1929), 226–236.
Davies, J., Inactivation of antibiotics and the dissemination of resistance genes. Science 264 (1994), 375–382.
Frère, J.-M., Sauvage, E., Kerff, F., From “An enzyme able to destroy penicillin” to carbapenemases: 70 years of beta-lactamase misbehaviour. Curr. Drug Targets 17 (2016), 974–982.
Frère, J.-M., Rigali, S., The alarming increase in antibiotic– resistant bacteria. Drug Target Rev., 3, 2016.
WHO AMR Report, WHO | Antimicrobial resistance: global report on surveillance 2014, WHO. (2014). http://www.who.int/drugresistance/documents/surveillancereport/en/ (accessed November 16, 2017).
Rice, L.B., Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis. 197 (2008), 1079–1081, 10.1086/533452.
Boucher, H.W., Talbot, G.H., Bradley, J.S., Edwards, J.E., Gilbert, D., Rice, L.B., Scheld, M., Spellberg, B., Bartlett, J., Bad bugs, no drugs: No ESKAPE! an update from the infectious diseases society of America. Clin. Infect. Dis. 48 (2009), 1–12, 10.1086/595011.
Pendleton, J.N., Gorman, S.P., Gilmore, B.F., Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther. 11 (2013), 297–308, 10.1586/eri.13.12.
Santajit, S., Indrawattana, N., Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int., 2016, 2016, 2475067, 10.1155/2016/2475067.
Arias, C.A., Murray, B.E., Antibiotic-resistant bugs in the 21st century–a clinical super-challenge. N. Engl. J. Med. 360 (2009), 439–443, 10.1056/NEJMp0804651.
Klevens, R.M., Edwards, J.R., Tenover, F.C., McDonald, L.C., Horan, T., Gaynes, R., National nosocomial infections surveillance system, changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992–2003. Clin. Infect. Dis. 42 (2006), 389–391, 10.1086/499367.
Holohan, C., Van Schaeybroeck, S., Longley, D.B., Johnston, P.G., Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13 (2013), 714–726, 10.1038/nrc3599.
Zahreddine, H., Borden, K.L.B., Mechanisms and insights into drug resistance in cancer. Front. Pharmacol., 4, 2013, 28, 10.3389/fphar.2013.00028.
Fuentefria, A.M., Pippi, B., Dalla Lana, D.F., Donato, K.K., de Andrade, S.F., Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett. Appl. Microbiol. 66 (2018), 2–13, 10.1111/lam.12820.
Jensen, R.H., Resistance in human pathogenic yeasts and filamentous fungi: prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment. Dan. Med. J., 63, 2016.
van der Vries, E., Schutten, M., Fraaij, P., Boucher, C., Osterhaus, A., Influenza virus resistance to antiviral therapy. Adv. Pharmacol. 67 (2013), 217–246, 10.1016/B978-0-12-405880-4.00006-8.
Délye, C., Jasieniuk, M., Le Corre, V., Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29 (2013), 649–658, 10.1016/j.tig.2013.06.001.
Kuester, A., Fall, E., Chang, S.-M., Baucom, R.S., Shifts in outcrossing rates and changes to floral traits are associated with the evolution of herbicide resistance in the common morning glory. Ecol. Lett. 20 (2017), 41–49, 10.1111/ele.12703.
Nuruzzaman, M., Zhang, R., Cao, H.-Z., Luo, Z.-Y., Plant pleiotropic drug resistance transporters: transport mechanism, gene expression, and function. J. Integr. Plant Biol. 56 (2014), 729–740, 10.1111/jipb.12196.
Li, X.-Z., Nikaido, H., Efflux-mediated drug resistance in bacteria: an update. Drugs 69 (2009), 1555–1623, 10.2165/11317030-000000000-00000.
Kumar, A., Schweizer, H.P., Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv. Drug Deliv. Rev. 57 (2005), 1486–1513, 10.1016/j.addr.2005.04.004.
Cooper, M.A., Shlaes, D., Fix the antibiotics pipeline. Nature, 472, 2011, 32, 10.1038/472032a.
Payne, D.J., Gwynn, M.N., Holmes, D.J., Pompliano, D.L., Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discovery 6 (2007), 29–40, 10.1038/nrd2201.
Bérdy, J., Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. (Tokyo) 65 (2012), 385–395, 10.1038/ja.2012.27.
Davies, J., How to discover new antibiotics: harvesting the parvome. Curr. Opin. Chem. Biol. 15 (2011), 5–10, 10.1016/j.cbpa.2010.11.001.
Davies, J., Ryan, K.S., Introducing the parvome: bioactive compounds in the microbial world. ACS Chem. Biol. 7 (2012), 252–259, 10.1021/cb200337h.
Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.-M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C.W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.-H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M.-A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B.G., Parkhill, J., Hopwood, D.A., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417 (2002), 141–147, 10.1038/417141a.
Challis, G.L., Hopwood, D.A., Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl. Acad. Sci. U.S.A. 100:Suppl 2 (2003), 14555–14561, 10.1073/pnas.1934677100.
Challis, G.L., Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J. Ind. Microbiol. Biotechnol. 41 (2014), 219–232, 10.1007/s10295-013-1383-2.
Thibessard, A., Haas, D., Gerbaud, C., Aigle, B., Lautru, S., Pernodet, J.-L., Leblond, P., Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer. J. Biotechnol. 214 (2015), 117–118, 10.1016/j.jbiotec.2015.09.020.
Aigle, B., Lautru, S., Spiteller, D., Dickschat, J.S., Challis, G.L., Leblond, P., Pernodet, J.-L., Genome mining of Streptomyces ambofaciens. J. Ind. Microbiol. Biotechnol. 41 (2014), 251–263, 10.1007/s10295-013-1379-y.
Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M., Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 12215–12220, 10.1073/pnas.211433198.
Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hattori, M., Horinouchi, S., Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190 (2008), 4050–4060, 10.1128/JB.00204-08.
Nolan, M., Sikorski, J., Jando, M., Lucas, S., Lapidus, A., Glavina Del Rio, T., Chen, F., Tice, H., Pitluck, S., Cheng, J.-F., Chertkov, O., Sims, D., Meincke, L., Brettin, T., Han, C., Detter, J.C., Bruce, D., Goodwin, L., Land, M., Hauser, L., Chang, Y.-J., Jeffries, C.D., Ivanova, N., Mavromatis, K., Mikhailova, N., Chen, A., Palaniappan, K., Chain, P., Rohde, M., Göker, M., Bristow, J., Eisen, J.A., Markowitz, V., Hugenholtz, P., Kyrpides, N.C., Klenk, H.-P., Complete genome sequence of Streptosporangium roseum type strain (NI 9100). Stand. Genomic Sci. 2 (2010), 29–37, 10.4056/sigs.631049.
Oliynyk, M., Samborskyy, M., Lester, J.B., Mironenko, T., Scott, N., Dickens, S., Haydock, S.F., Leadlay, P.F., Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat. Biotechnol. 25 (2007), 447–453, 10.1038/nbt1297.
Nett, M., Ikeda, H., Moore, B.S., Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26 (2009), 1362–1384, 10.1039/b817069j.
Genilloud, O., Actinomycetes: still a source of novel antibiotics. Nat. Prod. Rep. 34 (2017), 1203–1232, 10.1039/c7np00026j.
Schorn, M.A., Alanjary, M.M., Aguinaldo, K., Korobeynikov, A., Podell, S., Patin, N., Lincecum, T., Jensen, P.R., Ziemert, N., Moore, B.S., Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology 162 (2016), 2075–2086, 10.1099/mic.0.000386.
Ziemert, N., Lechner, A., Wietz, M., Millán-Aguiñaga, N., Chavarria, K.L., Jensen, P.R., Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), E1130–1139, 10.1073/pnas.1324161111.
Antony-Babu, S., Stien, D., Eparvier, V., Parrot, D., Tomasi, S., Suzuki, M.T., Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Sci. Rep., 7, 2017, 11089, 10.1038/s41598-017-11363-1.
Cruz-Morales, P., Ramos-Aboites, H.E., Licona-Cassani, C., Selem-Mójica, N., Mejía-Ponce, P.M., Souza-Saldívar, V., Barona-Gómez, F., Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits. FEMS Microbiol. Ecol., 93, 2017, 10.1093/femsec/fix086.
Arias, A.A., Lambert, S., Martinet, L., Adam, D., Tenconi, E., Hayette, M.-P., Ongena, M., Rigali, S., Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations. FEMS Microbiol. Ecol., 91, 2015, 10.1093/femsec/fiv080.
Galagan, J.E., Calvo, S.E., Cuomo, C., Ma, L.-J., Wortman, J.R., Batzoglou, S., Lee, S.-I., Bastürkmen, M., Spevak, C.C., Clutterbuck, J., Kapitonov, V., Jurka, J., Scazzocchio, C., Farman, M., Butler, J., Purcell, S., Harris, S., Braus, G.H., Draht, O., Busch, S., D'Enfert, C., Bouchier, C., Goldman, G.H., Bell-Pedersen, D., Griffiths-Jones, S., Doonan, J.H., Yu, J., Vienken, K., Pain, A., Freitag, M., Selker, E.U., Archer, D.B., Peñalva, M.Á., Oakley, B.R., Momany, M., Tanaka, T., Kumagai, T., Asai, K., Machida, M., Nierman, W.C., Denning, D.W., Caddick, M., Hynes, M., Paoletti, M., Fischer, R., Miller, B., Dyer, P., Sachs, M.S., Osmani, S.A., Birren, B.W., Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 438, 2005, 10.1038/nature04341.
Keller, N.P., Turner, G., Bennett, J.W., Fungal secondary metabolism — from biochemistry to genomics. Nat. Rev. Microbiol., 3, 2005, 10.1038/nrmicro1286.
Baranasic, D., Gacesa, R., Starcevic, A., Zucko, J., Blažič M., Horvat, M., Gjuračić K., Fujs, Š., Hranueli, D., Kosec, G., Cullum, J., Petković H., Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc., 1, 2013, 10.1128/genomeA.00581-13.
Wang, X.-J., Yan, Y.-J., Zhang, B., An, J., Wang, J.-J., Tian, J., Jiang, L., Chen, Y.-H., Huang, S.-X., Yin, M., Zhang, J., Gao, A.-L., Liu, C.-X., Zhu, Z.-X., Xiang, W.-S., Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis. J. Bacteriol. 192 (2010), 4526–4527, 10.1128/JB.00596-10.
Blin, K., Wolf, T., Chevrette, M.G., Lu, X., Schwalen, C.J., Kautsar, S.A., Suarez Duran, H.G., de, E.L.C., Los Santos, Kim, H.U., Nave, M., Dickschat, J.S., Mitchell, D.A., Shelest, E., Breitling, R., Takano, E., Lee, S.Y., Weber, T., Medema, M.H., antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res., 2017, 10.1093/nar/gkx319.
Erxleben, A., Wunsch-Palasis, J., Grüning, B.A., Luzhetska, M., Bechthold, A., Günther, S., Genome sequence of Streptomyces sp. strain Tü6071. J. Bacteriol. 193 (2011), 4278–4279, 10.1128/JB.00377-11.
Rebets, Y., Tokovenko, B., Lushchyk, I., Rückert, C., Zaburannyi, N., Bechthold, A., Kalinowski, J., Luzhetskyy, A., Complete genome sequence of producer of the glycopeptide antibiotic aculeximycin Kutzneria albida DSM 43870T, a representative of minor genus of Pseudonocardiaceae. BMC Genomics, 15, 2014, 10.1186/1471-2164-15-885.
Kinashi, H., Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters. J. Antibiot. (Tokyo) 64 (2011), 19–25, 10.1038/ja.2010.146.
Qin, S., Li, W.-J., Dastager, S.G., Hozzein, W.N., Editorial: actinobacteria in special and extreme habitats: diversity, function roles, and environmental adaptations. Front. Microbiol., 7, 2016, 10.3389/fmicb.2016.01415.
Hall, B.G., Yokoyama, S., Calhoun, D.H., Role of cryptic genes in microbial evolution. Mol. Biol. Evol. 1 (1983), 109–124.
Tamburini, E., Mastromei, G., Do bacterial cryptic genes really exist?. Res. Microbiol. 151 (2000), 179–182.
Katz, L., Baltz, R.H., Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 43 (2016), 155–176, 10.1007/s10295-015-1723-5.
Moore, J.M., Bradshaw, E., Seipke, R.F., Hutchings, M.I., McArthur, M., Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods Enzymol. 517 (2012), 367–385, 10.1016/B978-0-12-404634-4.00018-8.
Okada, B.K., Seyedsayamdost, M.R., Shen, A., Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 41 (2017), 19–33, 10.1093/femsre/fuw035.
Rutledge, P.J., Challis, G.L., Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13 (2015), 509–523, 10.1038/nrmicro3496.
Rebets, Y., Brötz, E., Tokovenko, B., Luzhetskyy, A., Actinomycetes biosynthetic potential: how to bridge in silico and in vivo?. J. Ind. Microbiol. Biotechnol. 41 (2014), 387–402, 10.1007/s10295-013-1352-9.
Baltz, R.H., Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J. Ind. Microbiol. Biotechnol. 43 (2016), 343–370, 10.1007/s10295-015-1682-x.
Bekiesch, P., Basitta, P., Apel, A.K., Challenges in the heterologous production of antibiotics in Streptomyces. Arch. Pharm. (Weinheim) 349 (2016), 594–601, 10.1002/ardp.201600058.
Bilyk, O., Luzhetskyy, A., Metabolic engineering of natural product biosynthesis in actinobacteria. Curr. Opin. Biotechnol. 42 (2016), 98–107, 10.1016/j.copbio.2016.03.008.
Genilloud, O., González, I., Salazar, O., Martín, J., Tormo, J.R., Vicente, F., Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Biotechnol. 38 (2011), 375–389, 10.1007/s10295-010-0882-7.
Komatsu, M., Komatsu, K., Koiwai, H., Yamada, Y., Kozone, I., Izumikawa, M., Hashimoto, J., Takagi, M., Omura, S., Shin-ya, K., Cane, D.E., Ikeda, H., Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth. Biol. 2 (2013), 384–396, 10.1021/sb3001003.
Ochi, K., Hosaka, T., New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 97 (2013), 87–98, 10.1007/s00253-012-4551-9.
Onaka, H., Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J. Antibiot. (Tokyo) 70 (2017), 865–870, 10.1038/ja.2017.51.
Seyedsayamdost, M.R., High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 7266–7271, 10.1073/pnas.1400019111.
Seyedsayamdost, M.R., Traxler, M.F., Clardy, J., Kolter, R., Old meets new: using interspecies interactions to detect secondary metabolite production in actinomycetes. Methods Enzymol. 517 (2012), 89–109, 10.1016/B978-0-12-404634-4.00005-X.
Zerikly, M., Challis, G.L., Strategies for the discovery of new natural products by genome mining. Chembiochem 10 (2009), 625–633, 10.1002/cbic.200800389.
Zhang, M.M., Qiao, Y., Ang, E.L., Zhao, H., Using natural products for drug discovery: the impact of the genomics era. Expert Opin. Drug Discov. 12 (2017), 475–487, 10.1080/17460441.2017.1303478.
Zhu, H., Sandiford, S.K., van Wezel, G.P., Triggers and cues that activate antibiotic production by actinomycetes. J. Ind. Microbiol. Biotechnol. 41 (2014), 371–386, 10.1007/s10295-013-1309-z.
Aigle, B., Corre, C., Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Methods Enzymol. 517 (2012), 343–366, 10.1016/B978-0-12-404634-4.00017-6.
Genilloud, O., Current challenges in the discovery of novel antibacterials from microbial natural products. Recent Pat. Anti-Infect. Drug Discov. 7 (2012), 189–204.
Monciardini, P., Iorio, M., Maffioli, S., Sosio, M., Donadio, S., Discovering new bioactive molecules from microbial sources. Microb. Biotechnol. 7 (2014), 209–220, 10.1111/1751-7915.12123.
Medema, M.H., Breitling, R., Takano, E., Synthetic biology in Streptomyces bacteria. Methods Enzymol. 497 (2011), 485–502, 10.1016/B978-0-12-385075-1.00021-4.
Gomez-Escribano, J.P., Bibb, M.J., Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J. Ind. Microbiol. Biotechnol. 41 (2014), 425–431, 10.1007/s10295-013-1348-5.
Bai, C., Zhang, Y., Zhao, X., Hu, Y., Xiang, S., Miao, J., Lou, C., Zhang, L., Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 12181–12186, 10.1073/pnas.1511027112.
Bode, E., Brachmann, A.O., Kegler, C., Simsek, R., Dauth, C., Zhou, Q., Kaiser, M., Klemmt, P., Bode, H.B., Simple “on-demand” production of bioactive natural products. Chembiochem 16 (2015), 1115–1119, 10.1002/cbic.201500094.
Yamanaka, K., Oikawa, H., Ogawa, H., Hosono, K., Shinmachi, F., Takano, H., Sakuda, S., Beppu, T., Ueda, K., Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151 (2005), 2899–2905, 10.1099/mic.0.28139-0.
Locatelli, F.M., Goo, K.-S., Ulanova, D., Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes. Metallomics 8 (2016), 469–480, 10.1039/c5mt00324e.
Craney, A., Ozimok, C., Pimentel-Elardo, S.M., Capretta, A., Nodwell, J.R., Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem. Biol. 19 (2012), 1020–1027, 10.1016/j.chembiol.2012.06.013.
Seipke, R.F., Kaltenpoth, M., Hutchings, M.I., Streptomyces as symbionts: an emerging and widespread theme?. FEMS Microbiol. Rev. 36 (2012), 862–876, 10.1111/j.1574-6976.2011.00313.x.
van der Meij, A., Worsley, S.F., Hutchings, M.I., van Wezel, G.P., Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41 (2017), 392–416, 10.1093/femsre/fux005.
Maciejewska, M., Adam, D., Naômé A., Martinet, L., Tenconi, E., Całusińska, M., Delfosse, P., Hanikenne, M., Baurain, D., Compère, P., Carnol, M., Barton, H.A., Rigali, S., Assessment of the potential role of Streptomyces in Cave moonmilk formation. Front. Microbiol., 8, 2017, 1181, 10.3389/fmicb.2017.01181.
Abrudan, M.I., Smakman, F., Grimbergen, A.J., Westhoff, S., Miller, E.L., van Wezel, G.P., Rozen, D.E., Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 11054–11059, 10.1073/pnas.1504076112.
Traxler, M.F., Watrous, J.D., Alexandrov, T., Dorrestein, P.C., Kolter, R., Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio, 4, 2013, 10.1128/mBio. 00459-13.
Schroeckh, V., Scherlach, K., Nützmann, H.-W., Shelest, E., Schmidt-Heck, W., Schuemann, J., Martin, K., Hertweck, C., Brakhage, A.A., Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 14558–14563, 10.1073/pnas.0901870106.
Wu, C., Zacchetti, B., Ram, A.F.J., van Wezel, G.P., Claessen, D., Hae Choi, Y., Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Sci. Rep., 5, 2015, 10868, 10.1038/srep10868.
Wilson, M.C., Mori, T., Rückert, C., Uria, A.R., Helf, M.J., Takada, K., Gernert, C., Steffens, U.A.E., Heycke, N., Schmitt, S., Rinke, C., Helfrich, E.J.N., Brachmann, A.O., Gurgui, C., Wakimoto, T., Kracht, M., Crüsemann, M., Hentschel, U., Abe, I., Matsunaga, S., Kalinowski, J., Takeyama, H., Piel, J., An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506 (2014), 58–62, 10.1038/nature12959.
Staley, J.T., Konopka, A., Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39 (1985), 321–346, 10.1146/annurev.mi.39.100185.001541.
H. Winterberg, Zur Methodik der Bakterienzählung - Semantic Scholar, (1898). /paper/Zur-Methodik-der-Bakterienzählung-Winterberg/83c2cfb0812705a5398f9940df3a24ceacb6e38a (accessed November 21, 2017).
Ling, L.L., Schneider, T., Peoples, A.J., Spoering, A.L., Engels, I., Conlon, B.P., Mueller, A., Schäberle, T.F., Hughes, D.E., Epstein, S., Jones, M., Lazarides, L., Steadman, V.A., Cohen, D.R., Felix, C.R., Fetterman, K.A., Millett, W.P., Nitti, A.G., Zullo, A.M., Chen, C., Lewis, K., A new antibiotic kills pathogens without detectable resistance. Nature 517 (2015), 455–459, 10.1038/nature14098.
Katz, M., Hover, B.M., Brady, S.F., Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol. Biotechnol. 43 (2016), 129–141, 10.1007/s10295-015-1706-6.
Culligan, E.P., Sleator, R.D., Marchesi, J.R., Hill, C., Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5 (2014), 399–412, 10.4161/viru.27208.
Martín, J.F., Liras, P., Cascades and networks of regulatory genes that control antibiotic biosynthesis. Subcell. Biochem. 64 (2012), 115–138, 10.1007/978-94-007-5055-5_6.
Urem, M., Świątek-Połatyńska, M.A., Rigali, S., van Wezel, G.P., Intertwining nutrient-sensory networks and the control of antibiotic production in Streptomyces. Mol. Microbiol. 102 (2016), 183–195, 10.1111/mmi.13464.
Martín, J.F., Sola-Landa, A., Santos-Beneit, F., Fernández-Martínez, L.T., Prieto, C., Rodríguez-García, A., Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb. Biotechnol. 4 (2011), 165–174, 10.1111/j.1751-7915.2010.00235.x.
van Wezel, G.P., McDowall, K.J., The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep. 28 (2011), 1311–1333, 10.1039/c1np00003a.
Rigali, S., Nivelle, R., Tocquin, P., On the necessity and biological significance of threshold-free regulon prediction outputs. Mol. Biosyst. 11 (2015), 333–337, 10.1039/c4mb00485j.
Hiard, S., Marée, R., Colson, S., Hoskisson, P.A., Titgemeyer, F., van Wezel, G.P., Joris, B., Wehenkel, L., Rigali, S., PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem. Biophys. Res. Commun. 357 (2007), 861–864, 10.1016/j.bbrc.2007.03.180.
Tocquin, P., Naome, A., Jourdan, S., Anderssen, S., Hiard, S., van Wezel, G.P., Hanikenne, M., Baurain, D., Rigali, S., PREDetector 2.0: online and enhanced version of the prokaryotic regulatory elements detector tool. BioRxiv, 2016, 084780, 10.1101/084780.
Colson, S., Stephan, J., Hertrich, T., Saito, A., van Wezel, G.P., Titgemeyer, F., Rigali, S., Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. J. Mol. Microbiol. Biotechnol. 12 (2007), 60–66, 10.1159/000096460.
Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A.W., Hopwood, D.A., van Wezel, G.P., Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 9 (2008), 670–675, 10.1038/embor.2008.83.
Tenconi, E., Urem, M., Świątek-Połatyńska, M.A., Titgemeyer, F., Muller, Y.A., van Wezel, G.P., Rigali, S., Multiple allosteric effectors control the affinity of DasR for its target sites. Biochem. Biophys. Res. Commun. 464 (2015), 324–329, 10.1016/j.bbrc.2015.06.152.
Rigali, S., Nothaft, H., Noens, E.E.E., Schlicht, M., Colson, S., Müller, M., Joris, B., Koerten, H.K., Hopwood, D.A., Titgemeyer, F., van Wezel, G.P., The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 61 (2006), 1237–1251, 10.1111/j.1365-2958.2006.05319.x.
Fillenberg, S.B., Friess, M.D., Körner, S., Böckmann, R.A., Muller, Y.A., Crystal structures of the global regulator DasR from Streptomyces coelicolor: implications for the allosteric regulation of GntR/HutC repressors. PLoS ONE, 11, 2016, e0157691, 10.1371/journal.pone.0157691.
Liao, C., Rigali, S., Cassani, C.L., Marcellin, E., Nielsen, L.K., Ye, B.-C., Control of chitin and N-acetylglucosamine utilization in Saccharopolyspora erythraea. Microbiology 160 (2014), 1914–1928, 10.1099/mic.0.078261-0.
Świątek, M.A., Urem, M., Tenconi, E., Rigali, S., van Wezel, G.P., Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Bioengineered 3 (2012), 280–285, 10.4161/bioe.21371.
Świątek, M.A., Tenconi, E., Rigali, S., van Wezel, G.P., Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J. Bacteriol. 194 (2012), 1136–1144, 10.1128/JB.06370-11.
Craig, M., Lambert, S., Jourdan, S., Tenconi, E., Colson, S., Maciejewska, M., Ongena, M., Martin, J.F., van Wezel, G., Rigali, S., Unsuspected control of siderophore production by N-acetylglucosamine in streptomycetes. Environ. Microbiol. Rep. 4 (2012), 512–521, 10.1111/j.1758-2229.2012.00354.x.
Flores, F.J., Barreiro, C., Coque, J.J.R., Martín, J.F., Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS J. 272 (2005), 725–735, 10.1111/j.1742-4658.2004.04509.x.
Flores, F.J., Martín, J.F., Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem. J. 380 (2004), 497–503, 10.1042/BJ20031945.
Francis, I.M., Jourdan, S., Fanara, S., Loria, R., Rigali, S., The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. mBio, 6, 2015, e02018, 10.1128/mBio. 02018-14.
Jourdan, S., Francis, I.M., Kim, M.J., Salazar, J.J.C., Planckaert, S., Frère, J.-M., Matagne, A., Kerff, F., Devreese, B., Loria, R., Rigali, S., The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated Induction of Streptomyces scabies pathogenicity. Sci. Rep., 6, 2016, 27144, 10.1038/srep27144.
Jourdan, S., Francis, I.M., Deflandre, B., Tenconi, E., Riley, J., Planckaert, S., Tocquin, P., Martinet, L., Devreese, B., Loria, R., Rigali, S., Contribution of the β-glucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies. Mol. Plant Pathol., 2017, 10.1111/mpp.12631.
King, R.R., Lawrence, C.H., Gray, J.A., Herbicidal properties of the thaxtomin group of phytotoxins. J. Agric. Food Chem. 49 (2001), 2298–2301.
King, R.R., Calhoun, L.A., The thaxtomin phytotoxins: sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 70 (2009), 833–841, 10.1016/j.phytochem.2009.04.013.
R. Loria, S. Jourdan, S. Rigali, I. Francis, Methods for Thaxtomin Production and Modified Streptomyces with Increased Thaxtomin Production, WO/2016/044527, 2016. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016044527 (accessed November 17, 2017).
Romero-Rodríguez, A., Robledo-Casados, I., Sánchez, S., An overview on transcriptional regulators in Streptomyces. Biochim. Biophys. Acta BBA – Gene Regul. Mech. 1849 (2015), 1017–1039, 10.1016/j.bbagrm.2015.06.007.
Bartlett, A., O'Malley, R.C., Huang, S.-S.C., Galli, M., Nery, J.R., Gallavotti, A., Ecker, J.R., Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12 (2017), 1659–1672, 10.1038/nprot.2017.055.
O'Malley, R.C., Huang, S.-S.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., Ecker, J.R., Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165 (2016), 1280–1292, 10.1016/j.cell.2016.04.038.
Suvorova, I.A., Rodionov, D.A., Comparative genomics of pyridoxal 5’-phosphate-dependent transcription factor regulons in bacteria. Microb. Genomics., 2, 2016, e000047, 10.1099/mgen.0.000047.
Ravcheev, D.A., Khoroshkin, M.S., Laikova, O.N., Tsoy, O.V., Sernova, N.V., Petrova, S.A., Rakhmaninova, A.B., Novichkov, P.S., Gelfand, M.S., Rodionov, D.A., Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front. Microbiol., 5, 2014, 294, 10.3389/fmicb.2014.00294.
Leyn, S.A., Suvorova, I.A., Kazakov, A.E., Ravcheev, D.A., Stepanova, V.V., Novichkov, P.S., Rodionov, D.A., Comparative genomics and evolution of transcriptional regulons in proteobacteria. Microb. Genomics., 2, 2016, e000061, 10.1099/mgen.0.000061.
Mobarra, N., Shanaki, M., Ehteram, H., Nasiri, H., Sahmani, M., Saeidi, M., Goudarzi, M., Pourkarim, H., Azad, M., A review on iron chelators in treatment of iron overload syndromes,. Int. J. Hematol.-Oncol. Stem Cell Res. 10 (2016), 239–247.
Saliba, A.N., Harb, A.R., Taher, A.T., Iron chelation therapy in transfusion-dependent thalassemia patients: current strategies and future directions. J. Blood Med. 6 (2015), 197–209, 10.2147/JBM.S72463.
Tunca, S., Barreiro, C., Sola-Landa, A., Coque, J.J.R., Martín, J.F., Transcriptional regulation of the desferrioxamine gene cluster of Streptomyces coelicolor is mediated by binding of DmdR1 to an iron box in the promoter of the desA gene. FEBS J. 274 (2007), 1110–1122, 10.1111/j.1742-4658.2007.05662.x.
Owen, G.A., Pascoe, B., Kallifidas, D., Paget, M.S.B., Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves zur and sigmaR. J. Bacteriol. 189 (2007), 4078–4086, 10.1128/JB.01901-06.
Kallifidas, D., Pascoe, B., Owen, G.A., Strain-Damerell, C.M., Hong, H.-J., Paget, M.S.B., The zinc-responsive regulator Zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor. J. Bacteriol. 192 (2010), 608–611, 10.1128/JB.01022-09.
Hesketh, A., Kock, H., Mootien, S., Bibb, M., The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 74 (2009), 1427–1444, 10.1111/j.1365-2958.2009.06941.x.
Choi, S.-H., Lee, K.-L., Shin, J.-H., Cho, Y.-B., Cha, S.-S., Roe, J.-H., Zinc-dependent regulation of zinc import and export genes by Zur. Nat. Commun., 8, 2017, 15812, 10.1038/ncomms15812.
Song, Z., Lohse, A.G., Hsung, R.P., Challenges in the synthesis of a unique mono-carboxylic acid antibiotic, (+)-zincophorin. Nat. Prod. Rep. 26 (2009), 560–571.
Spohn, M., Wohlleben, W., Stegmann, E., Elucidation of the zinc-dependent regulation in Amycolatopsis japonicum enabled the identification of the ethylenediamine-disuccinate ([S, S]-EDDS) genes. Environ. Microbiol. 18 (2016), 1249–1263, 10.1111/1462-2920.13159.
Scheible, W.-R., Fry, B., Kochevenko, A., Schindelasch, D., Zimmerli, L., Somerville, S., Loria, R., Somerville, C.R., An arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell. 15 (2003), 1781–1794, 10.1105/tpc.013342.
Takano, E., Gramajo, H.C., Strauch, E., Andres, N., White, J., Bibb, M.J., Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol. Microbiol. 6 (1992), 2797–2804.
Tenconi, E., Guichard, P., Motte, P., Matagne, A., Rigali, S., Use of red autofluorescence for monitoring prodiginine biosynthesis. J. Microbiol. Methods 93 (2013), 138–143, 10.1016/j.mimet.2013.02.012.
White, J., Bibb, M., bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J. Bacteriol. 179 (1997), 627–633.
Miguélez, E.M., Hardisson, C., Manzanal, M.B., Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J. Cell Biol. 145 (1999), 515–525.
Manteca, A., Claessen, D., Lopez-Iglesias, C., Sanchez, J., Aerial hyphae in surface cultures of Streptomyces lividans and Streptomyces coelicolor originate from viable segments surviving an early programmed cell death event. FEMS Microbiol. Lett. 274 (2007), 118–125, 10.1111/j.1574-6968.2007.00825.x.
Filippova, S.N., Vinogradova, K.A., Programmed cell death as one of the stages of streptomycete differentiation. Microbiology 86 (2017), 439–454, 10.1134/S0026261717040075.
Chater, K.F., Chandra, G., The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol. Rev. 30 (2006), 651–672, 10.1111/j.1574-6976.2006.00033.x.
Bartholomae, M., Buivydas, A., Viel, J.H., Montalbán-López, M., Kuipers, O.P., Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis. Mol. Microbiol. 106 (2017), 186–206, 10.1111/mmi.13764.
Hetrick, K.J., van der Donk, W.A., Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr. Opin. Chem. Biol. 38 (2017), 36–44, 10.1016/j.cbpa.2017.02.005.
Joshi, M.V., Bignell, D.R.D., Johnson, E.G., Sparks, J.P., Gibson, D.M., Loria, R., The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol. Microbiol. 66 (2007), 633–642, 10.1111/j.1365-2958.2007.05942.x.
Lechner, M., Findeiß S., Steiner, L., Marz, M., Stadler, P.F., Prohaska, S.J., Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinf., 12, 2011, 124, 10.1186/1471-2105-12-124.
Finn, R.D., Clements, J., Arndt, W., Miller, B.L., Wheeler, T.J., Schreiber, F., Bateman, A., Eddy, S.R., HMMER web server, update. Nucleic Acids Res. 43:2015 (2015), W30–W38, 10.1093/nar/gkv397.
Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y.M., Buso, N., Lopez, R., The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 43 (2015), W580–584, 10.1093/nar/gkv279.
Tsujibo, H., Kosaka, M., Ikenishi, S., Sato, T., Miyamoto, K., Inamori, Y., Molecular characterization of a high-affinity xylobiose transporter of Streptomyces thermoviolaceus OPC-520 and its transcriptional regulation. J. Bacteriol. 186 (2004), 1029–1037.