[en] Abstract The effect of the gel-drying temperature, annealing time at 900°C and calcination temperature used in the sol–gel synthesis of Li4Ti5O12 spinel (LTO) on the purity phase, structural and morphological features, and electrochemical properties has been investigated. Synthesized LTO-samples have been characterized by X-ray diffraction and scanning electron microscopy (FE-SEM). High purity LTO-spinels have been synthesized by adjusting the thermal treatment conditions. The rate capability and cycleability of the LTO-samples have been studied by galvanostatic techniques in Li-half cells. The influence of the gel-drying temperature on the LTO-phase purity has been clearly evidenced. Both annealing time and calcination temperature notably modify the morphological features as the particle size, the agglomeration of the particles and its porosity. All the studied LTO-samples show a similar evolution of the capacity vs current in the rate capability test. Cycling studies have shown that LTO-samples exhibit high reversibility. Among the sol–gel synthesized LTO-spinels that prepared after drying the gel precursor at 150°C, and then annealed at 550°C for 6h and 900°C for 1h shows the best electrochemical performances. It nominal capacity is 165mAh/g and it has a reversible capacity of 87mAh/g at 1C (175mA/g) with no capacity fading after 100 cycles.
Disciplines :
Chemistry
Author, co-author :
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Amarilla, José Manuel
Saadoune, Ismael
Language :
English
Title :
Effect of thermal treatment used in the sol–gel synthesis of Li4Ti5O12 spinel on its electrochemical properties as anode for lithium ion batteries
P.J. Hall, and E.J. Bain Energy-storage technologies and electricity generation Energy Policy 36 2008 4352 4355
B. Scrosati, K.M. Abraham, W.V. Schalkwijk, and J. Hasssoun Lithium batteries: advanced technologies and applications 2013 John & Sons Wiley Book
P. Tartaj, and J.M. Amarilla Porous inorganic nanostructures with colloidal dimensions: Synthesis and applications in electrochemical energy devices Chem. Commun. 50 2014 2077 2088
S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, and C. Capiglia Review on recent progress of nanostructured anode materials for Li-ion batteries J. Power Sources 257 2014 421 443
J.M. Amarilla, E. Morales, J. Sanz, I. Sobrados, and P. Tartaj Electrochemical response in aprotic ionic liquid electrolytes of TiO2 anatase anodes based on mesoporous mesocrystals with uniform colloidal size J. Power Sources 273 2015 368 374
T. Ohzuku, A. Ueda, and N. Yamamoto Zero-Strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells J. Electrochem. Soc. 142 1995 1431 1435
G.G. Amatucci, F. Badway, A. Du Pasquier, and T. Zheng An asymmetric hybrid nonaqueous energy storage cell J. Electrochem. Soc. 148 2001 A930 A939
K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger, and C.M. Julien Safe and fast-charging Li-ion battery with long shelf life for power applications J. Power Sources 196 2011 3949 3954
C.P. Sandhya, B. John, and C. Gouri Lithium titanate as anode material for lithium-ion cells: a review Ionics 20 2014 601 620
Y.C. Kuo, and J.Y. Lin one-pot so-gel synthesis of Li4Ti5O12/C anode materials for high-performance Li-ion batteries Electrochim. Acta 142 2014 43 50
Y.J. Hao, Q.Y. Lai, D.Q. Liu, Z.U. Xu, and X.Y. Ji Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery Chem. Phys. 94 2005 382 387
G.-Y. Liu, H.-Y. Wang, G.-Q. Liu, Z.-Z. Yang, B. Jin, and Q.-C. Jiang Facile synthesis of nanocrystalline Li4Ti5O12 by microemulsion and its application as anode material for Li-ion batteries J. Power Sources 220 2012 84 88
Y.H. Jin, K.M. Min, H.W. Shim, S.D. Seo, I.S. Hwang, K.S. Park, and D.W. Kim Facile synthesis of nano-Li4Ti5O12 for high-rate Li-ion battery anodes Nanoscale Res. Lett. 7 2012 10 16
L. Wu, S.R. Kan, S.G. Lu, X.J. Zhang, and W.H. Jin Effect of particle size and agglomeration of TiO2 on synthesis and electrochemical properties of Li4Ti5O12 Trans. Nonferrous Met. Soc. China 17 2007 s117 s212
H.G. Jung, S.T. Myung, C.S. Yoon, S.B. Son, K.H. Oh, K. Amine, B. Scrosati, and Y.K. Sun Microscale spherical carbon-coated Li4Ti5O12 as ultra-high power anode material for lithium batteries Energy Environ. Sci. 4 2011 1345 1351
A.B. Panda, A. Pathak, and P. Pramanik Low temperature preparation of nanocrystalline solid solution of strontium-barium-niobate by chemical process Mater. Lett. 52 2002 180 186
Y. Hao, Q. Lait, Z. Xu, X. Liu, and X. Ji Synthesis by TEA sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery Solid State Ionics 176 2005 1201 1206
A. Mahmoud, J.M. Amarilla, K. Lasri, and I. Saadoune Influence of the synthesis method on the electrochemical properties of the Li4Ti5O12 spinel in Li-half and Li-ion full-cells. A systematic comparison Electrochim. Acta 93 2013 163 172
J.R. Carvajal Laboratoire Leon Brillouin Fullprof: A Rietveld Refinement and Pattern Matching Analysis Program 2010 CEA-CNRS Grenoble, France
M.D. Abramoff, P.J. Magelhaes, and S.J. Ram Image processing with Image J Biophotonics International 11 2004 36 42
R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen Magnetically separable BiFeO3 nanoparticles with aγFe2O3 parasitic phase: controlled fabrication and enhanced visible-light photocatalytic activity J. Mater. Chem. 21 2011 18645 18652
Ö.Ç. Duvarci, M. Çiftçioʇlu, M. Güden, and G. Arikut Preparation and Microstuructural Development of Nanocrystalline Titania and Alumina Key Eng. Mater. 264-268 2004 2355 2358
M. Aklalouch, R.M. Rojas, J.M. Rojo, I. Saadoune, and J.M. Amarilla The role of particle size on the electrochemical properties at 25 and at 55 °C of the LiCr0.2Ni0.4Mn1.4O4 spinel as 5 V-cathode materials for lithium-ion batteries Electrochim. Acta 54 2009 7542 7550
K. Sawai, and T. Ohzuku Factors affecting rate capability of graphite electrodes for lithium ion batteries J. Electrochem. Soc. 150 2003 A674 A678
A.J. Smith, J.C. Burns, D. Xiong, and J.R. Dahn Interpreting high precision coulometry results on li-ion cells J. Electrochem. Soc. 158 2011 A1136 A1142
P. Liu, J. Wang, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, and P. Finamoure Aging Mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses J. Electrochem. Soc. 157 2010 A499 A507
M. Jo, Y.-S. Hong, J. Choo, and J. Cho Effect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries J. Electrochem. Soc. 156 6 2009 A430 A434
J.H. Ryu Polarization behavior of Li4Ti5O12 negative electrode for lithium ion batteries J. Electrochem. Sci. Tech. 3 2011 136 142
A. Singhal, G. Skandon, G. Amatucci, F. Badway, N. Ye, A. Manthiram, H. Ye, and J.J. Xu Nanostructured electrodes for next generation rechargeable electrochemical devices J. Power Sources 129 2004 38 44
Y.F. Tang, L. Yang, Z. Qiu, and J.S. Huang Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets Electrochem. Commun. 10 2008 1513 1516
Y. Tang, L. Yang, S. Fang, and Z. Qiu Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries Electrochim. Acta. 54 2009 6244 6249
S.L. Chou, J.Z. Wang, H.K. Liu, and S.X. Dou Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery J. Phys. Chem. C 115 2011 16220 16227
M. Kitta, T. Akita, S. Tanaka, and M. Kohyama Two-phase separation in a lithiated spinel Li4Ti5O12 crystal as confirmed by electron energy-loss spectroscopy J. Power Sources 257 2014 120 125
A. Mahmoud, I. Saadoune, S. Difi, M.T. Sougrati, P.E. Lippens, and J.M. Amarilla Study of the structural and thermal stability of Li0.3Co2/3Ni1/6Mn1/6O2 Electrochimica Acta 135 2014 536 542
A. Jaiswal, C.R. Horne, O. Chang, W. Zhang, W. Kong, E. Wang, T. Chern, and M.M. Doeff Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-Ion Batteries J. Electrochem. Soc. 156 2009 A1041 A1046
A. Mahmoud, M. Chamas, J.-C. Jumas, B. Philippe, R. Dedryvère, D. Gonbeau, I. Saadoune, and P.-E. Lippens Electrochemical performances and mechanisms of MnSn2 as anode material for Li-ion batteries J. Power Sources 244 2013 246 251
J.M. Amarilla, B. Casal, and E. Ruiz-Hitzky MVO5 (M = Nb, Ta) mixed oxides: sol-gel synthesis, structural and thermal characterization, and electrochemical Li+-insertion J. Mater. Chem. 6 1996 1005 1011
M. Nishizawa, K. Maukai, S. Kuwabata, C.R. Martin, and H. Yoneyama Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries J. Electrochem. Soc. 144 1997 1923 1927
M. Kunduraci, and G.G. Amatucci The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5-δO4 spinel lithium-ion battery cathodes Electrochim. Acta 53 2008 4193 4199
Y. Fan, J. Wang, X. Ye, and J. Zhang Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method Mater. Chem. Phys. 103 2007 19 23