methods: data analysis; techniques: high angular resolution; techniques: imaging spectroscopy; planetary systems; planets and satellites: detection
Abstract :
[en] Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise.
Aims. In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images.
Methods. We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA).
Results. This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from ∼2 to ∼10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level.
Conclusions. The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve the demographics of directly imaged exoplanets.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège STAR - Space sciences, Technologies and Astrophysics Research - ULiège Telim
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gómez González, Carlos ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > PSILab
Van Droogenbroeck, Marc ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Language :
English
Title :
Supervised detection of exoplanets in high-contrast imaging sequences
FP7 - 337569 - VORTEX - Taking extrasolar planet imaging to a new level with vector vortex coronagraphy
Name of the research project :
VORTEX
Funders :
UE - Union Européenne
Funding text :
The authors would like to thank the python open-source scientific community and the developers of the Keras deep learning library. The
authors acknowledge fruitful discussions and ideas from the participants in the Exoplanet Imaging and Characterization workshop organized by the W.M. Keck Institute for Space Studies. The research leading to these results has received funding from the European Research Council Under the European Union’s Seventh Framework Program (ERC Grant Agreement n. 337569) and from the French Community of Belgium through an ARC grant for Concerted Research Action.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abadi, M., Agarwal, A., Barham, P., et al. 2015, ArXiv e-prints: [arXiv:1603.04467], software available from tensorflow. org
Absil, O., Milli, J., Mawet, D., et al. 2013, A&A, 559, L12
Amara, A., & Quanz, S. P. 2012, MNRAS, 427, 948
Ball, N. M., & Brunner, R. J. 2010, Int. J. Mod. Phys. D, 19, 1049
Barrett, H. H., Myers, K. J., Devaney, N., Dainty, J. C., & Caucci, L. 2006, in Advances in Adaptive Optics II., eds. B. L. Ellerbroek, & D. Bonaccini Calia, Proc. SPIE, 6272, 1W
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Beuzit, J.-L., Feldt, M., Dohlen, K., et al. 2008, in Ground-based and Airborne Instrumentation for Astronomy II, eds. I. S. McLean, & M. M. Casali, Proc. SPIE, 7014, 701418
Boureau Y.-L., Ponce, J., & LeCun, Y. 2010, in ICML, eds. J. Fürnkranz & T. Joachims (Madison, WI: Omnipress), 111
Bowler, B. P. 2016, PASP, 128, 102001
Braham, M., & Van Droogenbroeck, M. 2016, Int. Conf. on Systems, Signals and Image Processing, held in Bratislava, Slovakia
Breiman, L. 2001, Machine Learning, 45, 5
Cantalloube, F., Mouillet, D., Mugnier, L. M., et al. 2015, A&A, 582, A89
Chollet, F. 2017, Deep Learning with Python (Shelter Island, NY: Manning Publications)
Chollet, F., et al. 2015, Keras, https://github.com/fchollet/keras
Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441
Dohlen, K., Langlois, M., Saisse, M., et al. 2008, in Ground-based and Airborne Instrumentation for Astronomy II, eds. I. S. McLean, & M. M. Casali, Proc. SPIE, 7014, 70143L
Fergus, R., Hogg, D. W., Oppenheimer, R., Brenner, D., & Pueyo, L. 2014, ApJ, 794, 161
Flamary, R. 2016, ArXiv e-prints [arXiv:1612.04526]
Frontera-Pons, J., Sureau, F., Bobin, J., & Le Floc'h, E. 2017, A&A 603, A60
Gomez Gonzalez, C. A., Absil, O., Absil, P.-A., et al. 2016, A&A, 589, A54
Gomez Gonzalez, C. A., Wertz, O., Absil, O., et al. 2017, AJ, 154, 7
Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (Cambridge, MA: MIT Press), http://www.deeplearningbook.org
Graham, J. R., Macintosh, B., Doyon, R., et al. 2007, ArXiv e-prints [arXiv: 0704.1454]
Halko, N., Martinsson, P.-G., & Tropp, J. A. 2011, SIAM Review, 53, 217
Hardy, A., Schreiber, M. R., Parsons, S. G., et al. 2015, ApJ, 800, L24
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2012, ArXiv e-prints [arXiv: 1207.0580]
Hochreiter, S., & Schmidhuber, J. 1997, Neural Comput., 9, 1735
Hoyle, B. 2016, Astron. Comput., 16, 34
Kenworthy, M. A., Codona, J. L., Hinz, P. M., et al. 2007, ApJ, 660, 762
Kim, E. J., & Brunner, R. J., 2017, MNRAS, 464, 4463
Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv: 1412.6980]
Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012, in Advances in Neural Information Processing Systems, 1097
Lafrenière, D., Marois, C., Doyon, R., Nadeau, D., & Artigau, É. 2007, ApJ, 660, 770
Lagrange, A.-M., Bonnefoy, M., Chauvin, G., et al. 2010, Science, 329, 57
Lawson, P. R., Poyneer, L., Barrett, H., et al. 2012, in Adaptive Optics Systems III, Proc. SPIE, 8447, 844722
LeCun, Y., Jackel, L. D., Boser, B., et al. 1989, IEEE Commun. Mag., 27, 41
Louppe, G. 2014, Ph.D. Thesis, University of Li, Belgium, https://github.com/glouppe/phd-thesis [arXiv: 1407.7502]
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., & Nadeau, D. 2006, ApJ, 641, 556
Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., & Barman, T. 2010, Nature, 468, 1080
Masias, M., Freixenet, J., Lladó, X., & Peracaula, M. 2012, MNRAS, 422, 1674
Mawet, D., Riaud, P., Absil, O., & Surdej, J. 2005, ApJ, 633, 1191
Mawet, D., Milli, J., Wahhaj, Z., et al. 2014, ApJ, 792, 97
Milli, J., Mawet, D., Mouillet, D., Kasper, M., &Girard, J. H. 2016, in Astronomy at High Angular Resolution, (Springer) 439, 17
Mugnier, L. M., Cornia, A., Sauvage, J.-F., et al. 2009, J. Opt. Soc. Am. A, 26, 1326
Nair, V., & Hinton, G. E. 2010, in ICML, eds. J. Fürnkranz & T. Joachims (Madison, WI: Omnipress), 807
Odewahn, S. C., Stockwell, E. B., Pennington, R. L., Humphreys, R. M., & Zumach, W. A. 1992, AJ, 103, 318
Rouan, D., Riaud, P., Boccaletti, A., Clénet, Y., & Labeyrie, A. 2000, PASP, 112, 1479
Ruffio, J.-B., Macintosh, B., Wang, J. J., et al. 2017, ApJ, 842, 14
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, in Parallel Distributed Processing, eds. D. E. Rumelhart & J. L. Mcclelland, (Cambridge, MA: MIT Press), 1, 318
Schawinski, K., Zhang, C., Zhang, H., Fowler, L., & Santhanam, G. K. 2017, MNRAS, 467, L110
Shi, X., Chen, Z., Wang, H., et al. 2015, in NIPS (Cambridge, MA: MIT Press), 802
Soummer, R. 2005, ApJ, 618, L161
Soummer, R., Pueyo, L., & Larkin, J. 2012, ApJ, 755, L28
Sparks, W. B. & Ford, H. C. 2002, ApJ, 578, 543
Spergel, D., & Kasdin, J. 2001, in BAAS, 33, 1431
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014, J. Mach. Learn. Res., 15, 1929
Tagliaferri, R., Longo, G., Milano, L., et al. 2003, Neural Networks, 16, 297
Tran, D., Bourdev, L. D., Fergus, R., Torresani, L., & Paluri, M. 2015, in ICCV (IEEE Computer Society), 4489
Xie, D., Zhang, L., & Bai, L. 2017, Appl. Comp. Int. Soft Comput., 2017, 13, 1320780
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.