[en] PURPOSE: Muscle strengthening is commonly based on the use of isoinertial loading, whereas variable resistances such as pneumatic loading may be implemented to optimize training stimulus. The purpose of the current study was to determine the effect of the ratio between pneumatic and isoinertial resistance on the force-velocity relationship during ballistic movements. METHODS: A total of 15 participants performed 2 concentric repetitions of ballistic bench-press movements with intention to throw the bar at 30%, 45%, 60%, 75%, and 90% of the maximal concentric repetition with 5 resistance ratios including 100%, 75%, 50%, 25%, or 0% of pneumatic resistance, the additional load being isoinertial. Force-, velocity-, and power-time patterns were assessed and averaged over the concentric phase to determine the force-velocity and power-velocity relationships for each resistance ratio. RESULTS: Each 25% increase in the pneumatic part in the resistance ratio elicited higher movement velocity (+0.11 +/- 0.03 m/s from 0% to 80% of the concentric phase) associated with lower force levels (-43.6 +/- 15.2 N). Increased isoinertial part in the resistance ratio resulted in higher velocity toward the end of the movement (+0.23 +/- 0.01 m/s from 90% to 100%). CONCLUSIONS: The findings show that the resistance ratio could be modulated to develop the acceleration phase and force toward the end of the concentric phase (pneumatic-oriented resistance). Inversely, isoinertial-oriented resistance should be used to develop maximal force and maximal power. Resistance modality could, therefore, be considered an innovative variable to modulate the training stimulus according to athletic purposes.
Disciplines :
Orthopedics, rehabilitation & sports medicine
Author, co-author :
Avrillon, Simon; French Inst of Sport (INSEP) > Laboratory of Sport, Expertise and Performance
Jidovtseff, Boris ; Université de Liège - ULiège > Département des sciences de la motricité > Déterm. perf. & asp. gén.et spéc.de l'entr.y comp.de ht niv.
Hug, Francois; University of Nantes, France > Faculty of Sport Sciences, Laboratory Movement, Interactions, Performance
Guilhem, Gael; French Inst of Sport (INSEP) > Laboratory of Sport, Expertise and Performance
Language :
English
Title :
Influence of Isoinertial-Pneumatic Mixed Resistances on Force-Velocity Relationship.
Publication date :
2017
Journal title :
International Journal of Sports Physiology and Performance
American College of Sports Medicine. American College of Sports Medicine position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687-708. PubMed doi:10.1249/MSS.0b013e3181915670
Jaric S. Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med. 2015;36:699-704. PubMed doi:10.1055/s-0035-1547283
Giroux C, Rabita G, Chollet D, Guilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2016;32:59-68. PubMed doi:10.1123/jab.2015-0070
Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:583-594. PubMed doi:10.1111/sms.12389
Hill AV. The heat of shortening and the dynamic constants of muscle. Proc Biol Sci. 1938;126:136-195. doi:10.1098/rspb.1938.0050
Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267-272. PubMed doi:10.1123/ijspp.2015-0638
Cronin JB, McNair PJ, Marshall RN. Force-velocity analysis of strength-training techniques and load: implications for training strategy and research. J Strength Cond Res. 2003;17:148-155. PubMed
Cormie P, McCaulley GO, McBride JM. Power versus strengthpower jump squat training: influence on the load-power relationship. Med Sci Sports Exerc. 2007;39:996-1003. PubMed doi:10.1097/ mss.0b013e3180408e0c
Newton RU, Kraemer WJ, Häkkinen K, Humphries BJ, Murphy AJ. Kinematics, kinetics, and muscle activation during explosive upper body movements. J Appl Biomech. 1996;12:31-43. doi:10.1123/ jab.12.1.31
Wilson GJ, Newton RU, Murphy AJ, Humphries BJ. The optimal training load for the development of dynamic athletic performance. Med Sci Sports Exerc. 1993;25:1279-1286. PubMed doi:10.1249/00005768-199311000-00013
Frost DM, Cronin J, Newton RU. A biomechanical evaluation of resistance: fundamental concepts for training and sports performance. Sports Med. 2010;40:303-326. PubMed doi:10.2165/11319420-000000000-00000
Keiser DL. Inventor; US Patents, assignee. Pneumatic exercising device. Patent No. US 4257593 A. 1981.
Frost DM, Cronin JB, Newton RU. A comparison of the kinematics, kinetics and muscle activity between pneumatic and free weight resistance. Eur J Appl Physiol. 2008;104:937-956. PubMed doi:10.1007/ s00421-008-0821-8
Peltonen H, Häkkinen K, Avela J. Neuromuscular responses to different resistance loading protocols using pneumatic and weight stack devices. J Electromyogr Kinesiol. 2013;23:118-124. PubMed doi:10.1016/j.jelekin.2012.08.017
Baker DG, Newton RU. Effect of kinetically altering a repetition via the use of chain resistance on velocity during the bench press. J Strength Cond Res. 2009;23:1941-1946. PubMed doi:10.1519/ JSC.0b013e3181b3dd09
Crewther BT, Kilduff LP, Cunningham DJ, Cook C, Owen N, Yang GZ. Validating two systems for estimating force and power. Int J Sports Med. 2011;32(4):254-258. PubMed doi:10.1055/s-0030-1270487
Giroux C, Rabita G, Chollet D, Guilhem G. What is the best method for assessing lower limb force-velocity relationship? Int J Sports Med. 2015;36(2):143-149. PubMed
Leontijevic B, Pazin N, Kukolj M, Ugarkovic D, Jaric S. Selective effects of weight and inertia on maximum lifting. Int J Sports Med. 2013;34:232-238. PubMed
Newton RU, Murphy AJ, Humphries BJ, Wilson GJ, Kraemer WJ, Häkkinen K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol. 1997;75:333-342. PubMed doi:10.1007/s004210050169
Clark RA, Bryant AL, Humphries B. A comparison of force curve profiles between the bench press and ballistic bench throws. J Strength Cond Res. 2008;22:1755-1759. PubMed doi:10.1519/ JSC.0b013e3181874735
Crewther B, Cronin J, Keogh J. Possible stimuli for strength and power adaptation: acute mechanical responses. Sports Med. 2005;35:967-989. PubMed doi:10.2165/00007256-200535110-00004
Baker D. A series of studies on the training of high-intensity muscle power in rugby league football players. J Strength Cond Res. 2001;15:198-209. PubMed
Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35:213-234. PubMed doi:10.2165/00007256-200535030-00003
Bobbert MF. Effect of unloading and loading on power in simulated countermovement and squat jumps. Med Sci Sports Exerc. 2014;46:1176-1184. PubMed doi:10.1249/MSS.0000000000000216
Markovic G, Jaric S. Positive and negative loading and mechanical output in maximum vertical jumping. Med Sci Sports Exerc. 2007;39:1757-1764. PubMed doi:10.1249/mss.0b013e31811ece35
Behm DG, Sale DG. Velocity specificity of resistance training. Sports Med. 1993;15:374-388. PubMed doi:10.2165/00007256-199315060-00003
Samozino P, Rejc E, Di Prampero PE, Belli A, Morin J-B. Optimal force-velocity profile in ballistic movements-altius: citius or fortius? Med Sci Sports Exerc. 2012;44:313-322. PubMed doi:10.1249/ MSS.0b013e31822d757a