Article (Scientific journals)
Upper-bounds for quadratic 0-1 maximization
Boros, Endre; Crama, Yves; Hammer, Peter L.
1990In Operations Research Letters, 9, p. 73-79
Peer Reviewed verified by ORBi
 

Files


Full Text
Upper bounds Quadratic ORLetters preprint.pdf
Author preprint (8.26 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
quadratic 0–1 maximization; pseudo-Boolean programming; linearization
Abstract :
[en] In this paper, three different approaches are generalised to obtain upper bounds for the maximum of a quadratic pseudo-Boolean function f over [0,1]^n. The original approaches (complementation, majorization and linearization) were introduced by Hammer, Hansen and Simeone. The generalization in this paper yields three upper bounds, Ck, Mk and Lk for each integer k ⩾ 2, where Cn = Ln = Mn is the maximum of f, and C2 = L2 = M2 is the roof duality bound studied by Hammer, Hansen and Simeone. It is proved that Ck = Mk = Lk for all values of k.
Disciplines :
Mathematics
Quantitative methods in economics & management
Author, co-author :
Boros, Endre
Crama, Yves  ;  Université de Liège - ULiège > HEC Liège : UER > Recherche opérationnelle et gestion de la production
Hammer, Peter L.
Language :
English
Title :
Upper-bounds for quadratic 0-1 maximization
Publication date :
1990
Journal title :
Operations Research Letters
ISSN :
0167-6377
eISSN :
1872-7468
Publisher :
Elsevier Science
Volume :
9
Pages :
73-79
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 24 December 2017

Statistics


Number of views
74 (1 by ULiège)
Number of downloads
206 (0 by ULiège)

Scopus citations®
 
29
Scopus citations®
without self-citations
24
OpenCitations
 
37
OpenAlex citations
 
54

Bibliography


Similar publications



Contact ORBi