Article (Scientific journals)
A complexity index for satisfiability problems
Boros, Endre; Crama, Yves; Hammer, Peter L. et al.
1994In SIAM Journal on Computing, 23, p. 45-49
Peer Reviewed verified by ORBi
 

Files


Full Text
Complexity index.pdf
Publisher postprint (547.9 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Boolean satisfiability; polynomial algorithms; NP completeness
Abstract :
[en] This paper associates a linear programming problem (LP) to any conjunctive normal form p, and shows that the optimum value Z(p) of this LP measures the complexity of the corresponding SAT (Boolean satisfiability) problem. More precisely, there is an algorithm for SAT that runs in polynomial time on the class of satisfiability problems satisfying Z(p) \leq 1 + \frac{c \log n}{n} for a fixed constant c, where n is the number of variables. In contrast, for any fixed \beta < 1, SAT is still NP-complete when restricted to the class of CNFs for which Z(p) \leq 1 + (1/n^\beta ).
Disciplines :
Computer science
Mathematics
Author, co-author :
Boros, Endre
Crama, Yves  ;  Université de Liège - ULiège > HEC Liège : UER > Recherche opérationnelle et gestion de la production
Hammer, Peter L.
Saks, Mike
Language :
English
Title :
A complexity index for satisfiability problems
Publication date :
1994
Journal title :
SIAM Journal on Computing
ISSN :
0097-5397
eISSN :
1095-7111
Publisher :
Society for Industrial & Applied Mathematics
Volume :
23
Pages :
45-49
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 21 December 2017

Statistics


Number of views
76 (2 by ULiège)
Number of downloads
1 (0 by ULiège)

Scopus citations®
 
41
Scopus citations®
without self-citations
37
OpenCitations
 
31
OpenAlex citations
 
49

Bibliography


Similar publications



Contact ORBi