[en] A long chain of processes connects the satellite auroral footprints to the moon-magnetosphere interaction from which they originate. These processes include Alfvén waves’ generation, filamentation, reflection, and bi-directional electron acceleration. The Io footprint is the most studied auroral footprint, because it is both the brightest one and the most isolated from other auroral emissions. It is made of at least three separate spots and an extended tail in the downstream direction. Early detections of the Europa and Ganymede footprints only identified single spots for these footprints, but re-analysis of the large dataset of Hubble Space Telescope images of the Jovian aurorae showed that they can also be made of multiple spots and display a tail. Moreover, the relative motion of these spots as a function of the location of the satellite is consistent with previous observations of the Io footprint, indicating that this dynamics corresponds to universal processes. Furthermore, a number of recent studies focused on the evolution of the brightness of these spots, with timescales ranging from minutes to days, and the signification of these changes will be reviewed. Finally, a discussion of the theoretical models explaining the footprint tails and their properties will be provided.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Generation and Similarity of the Jovian Satellite Footprints