Reference : Study of buoyancy driven heat transport in silicone oils and in liquid nitrogen in vi...
Scientific journals : Article
Engineering, computing & technology : Multidisciplinary, general & others
http://hdl.handle.net/2268/217262
Study of buoyancy driven heat transport in silicone oils and in liquid nitrogen in view of cooling applications
English
Satpathy, Kamalakanta [Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes >]
Duchesne, Alexis [Université de Liège - ULiège > Département de Physique > Optofluidique > >]
Dubois, Charles [Université de Liège - ULiège > Département de Physique > Optofluidique > >]
Fagnard, Jean-François [Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > > >]
Caps, Hervé [Université de Liège - ULiège > Département de physique > Optofluidique >]
Vanderbemden, Philippe [Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques >]
Vanderheyden, Benoît mailto [Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes >]
2018
International Journal of Heat and Mass Transfer
Elsevier
118
538-550
Yes (verified by ORBi)
International
0017-9310
[en] Computational Fluid Dynamics ; Rayleigh Number ; Rayleigh-Bénard convection ; Convective cooling
[en] Motivated by applications for cooling superconducting pellets with liquid nitrogen, we consider a source with a fixed heating rate per unit volume, immersed in a liquid pool and cooled through natural convection. In one recent experimental investigation (Dubois et al., 2016) carried on silicone oils and liquid nitrogen, we have demonstrated that the velocity field satisfies specific scaling laws with respect to the temperature increase in the liquid pool. In this work, we pursue the analysis by modeling the heat transfer in a parallelepiped enclosure for a steady laminar flow regime. The Navier-Stokes equations are solved using a finite volume approach to obtain the detailed three-dimensional flow and heat transfer characteristics. A quantitative analysis of the velocity field over the temperature field shows that the experimental power laws are reproduced in simulations. Following Dubois and Berge (1978), a theoretical law originally introduced in the context of the classical Rayleigh-Bénard experiment is shown to be satisfied in the simulations over a wide range of Rayleigh numbers (Ra), assuming the definition of the characteristic convection length is adapted to the investigated geometry. Moreover, the simulations are shown to correctly reproduce the main features of the flow, including the characteristic convection length, for different heater lengths.
Communauté française de Belgique - CfB
ARC 11/16-03
http://hdl.handle.net/2268/217262
10.1016/j.ijheatmasstransfer.2017.11.017
https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.017

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
author_postprint_IJHMAT.pdfAuthor postprint1.86 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.