[en] The algae Chlamydomonas reinhardtii and Polytomella sp., a green and a colorless member of the chlorophycean lineage respectively, exhibit a highly-stable dimeric mitochondrial F1Fo-ATP synthase (complex V), with a molecular mass of 1600kDa. Polytomella, lacking both chloroplasts and a cell wall, has greatly facilitated the purification of the algal ATP-synthase. Each monomer of the enzyme has 17 polypeptides, eight of which are the conserved, main functional components, and nine polypeptides (Asa1 to Asa9) unique to chlorophycean algae. These atypical subunits form the two robust peripheral stalks observed in the highly-stable dimer of the algal ATP synthase in several electron-microscopy studies. The topological disposition of the components of the enzyme has been addressed with cross-linking experiments in the isolated complex; generation of subcomplexes by limited dissociation of complex V; detection of subunit-subunit interactions using recombinant subunits; in vitro reconstitution of subcomplexes; silencing of the expression of Asa subunits; and modeling of the overall structural features of the complex by EM image reconstruction. Here, we report that the amphipathic polymer Amphipol A8-35 partially dissociates the enzyme, giving rise to two discrete dimeric subcomplexes, whose compositions were characterized. An updated model for the topological disposition of the 17 polypeptides that constitute the algal enzyme is suggested. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
[1] Alfonzo, M., Kandrach, M.A., Racker, E., Isolation, characterization, and reconstitution of a solubilized fraction containing the hydrophobic sector of the mitochondrial proton pump. J. Bioenerg. Biomembr. 13 (1981), 375–391.
[3] Arselin, G., Vaillier, J., Salin, B., Schaeffer, J., Giraud, M.F., Dautant, A., Brèthes, D., Velours, J., The modulation in subunits e and g amounts of yeast ATP synthase modifies mitochondrial cristae morphology. J. Biol. Chem. 279 (2004), 40392–40399.
[4] Walker, J.E., Dickson, V.K., The peripheral stalk of the mitochondrial ATP synthase. Biochim. Biophys. Acta 1757 (2006), 286–296.
[5] Wächter, A., Bi, Y., Dunn, S.D., Cain, B.D., Sielaff, H., Wintermann, F., Engelbrecht, S., Junge, W., Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 3924–3929.
[6] Yasuda, R., Noji, H., Kinosita, K. Jr., Yoshida, M., F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93 (1998), 1117–1124.
[7] Gledhill, J.R., Walker, J.E., Inhibition sites in F1-ATPase from bovine heart mitochondria. Biochem. J. 386 (2005), 591–598.
[8] Stewart, A.G., Lee, L.K., Donohoe, M., Chaston, J.J., Stock, D., The dynamic stator stalk of rotary ATPases. Nat. Commun., 3, 2012, 687.
[9] Dickson, V.K., Silvester, J.A., Fearnley, I.M., Leslie, A.G., Walker, J.E., On the structure of the stator of the mitochondrial ATP synthase. EMBO J. 25 (2006), 2911–2918.
[10] Seelert, H., Dencher, N.A., ATP synthase superassemblies in animals and plants: two or more are better. Biochim. Biophys. Acta 1807 (2011), 1185–1197.
[11] Thomas, D., Bron, P., Weimann, T., Dautant, A., Giraud, M.F., Paumard, P., Salin, B., Cavalier, A., Velours, J., Brèthes, D., Supramolecular organization of the yeast F1Fo-ATP synthase. Biol. Cell. 100 (2008), 591–601.
[12] Strauss, M., Hofhaus, G., Schröder, R.R., Kühlbrandt, W., Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 27 (2008), 1154–1160.
[13] Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D.M., Brèthes, D., di Rago, J.P., Velours, J., The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21 (2002), 221–230.
[14] Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R.A., Schägger, H., Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J. 17 (1998), 7170–7178.
[15] Fronzes, R., Weimann, T., Vaillier, J., Velours, J., Brèthes, D., The peripheral stalk participates in the yeast ATP synthase dimerization independently of e and g subunits. Biochemistry 45 (2006), 6715–6723.
[16] Zikova, A., Schnaufer, A., Dalley, R.A., Panigrahi, A.K., Stuart, K.D., The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog., 5, 2009, e1000436.
[17] Perez, E., Lapaille, M., Degand, H., Cilibrasi, L., Villavicencio-Queijeiro, A., Morsomme, P., González-Halphen, D., Field, M.C., Remacle, C., Baurain, D., Cardol, P., The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 19:Pt B (2014), 338–349.
[18] Vázquez-Acevedo, M., Cardol, P., Cano-Estrada, A., Lapaille, M., Remacle, C., González-Halphen, D., The mitochondrial ATP synthase of chlorophycean algae contains eight subunits of unknown origin involved in the formation of an atypical stator-stalk and in the dimerization of the complex. J. Bioenerg. Biomembr. 38 (2006), 271–282.
[19] Balabaskaran, N.P., Dudkina, N.V., Kane, L.A., van Eyk, J.E., Boekema, E.J., Mather, M.W., Vaidya, A.B., Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol., 8, 2010, e1000418.
[20] Couoh-Cardel, S.J., Uribe-Carvajal, S., Wilkens, S., García-Trejo, J.J., Structure of dimeric F1F0-ATP synthase. J. Biol. Chem. 285 (2010), 36447–36455.
[21] Herron, M.D., Hackett, J.D., Aylward, F.O., Michod, R.E., Triassic origin and early radiation of multicellular volvocine algae. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 3254–3258.
[22] Rodríguez-Salinas, E., Remacle, C., González-Halphen, D., Green Algae Genomics: A Mitochondrial Perspective. Maréchal-Drouard, L., (eds.) Mitochondrial Genome Evolution Advances in Botanical Research, Volume 63, 2012, Elsevier Inc., San Diego, 187–214.
[23] Rodríguez-Salinas, E., Riveros-Rosas, H., Li, Z., Fucíková, K., Brand, J.J., Lewis, L.A., González-Halphen, D., Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta). Mol. Phylogenet. Evol. 64 (2012), 166–176.
[24] Cardol, P., González-Halphen, D., Reyes-Prieto, A., Baurain, D., Matagne, R.F., Remacle, C., The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. Plant Physiol. 137 (2005), 447–459.
[25] Lapaille, M., Escobar-Ramírez, A., Degand, H., Baurain, D., Rodríguez-Salinas, E., Coosemans, N., Boutry, M., Gonzalez-Halphen, D., Remacle, C., Cardol, P., Atypical subunit composition of the chlorophycean mitochondrial F1FO-ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme. Mol. Biol. Evol. 27 (2010), 1630–1644.
[26] Colina-Tenorio, L., Miranda-Astudillo, H., Cano-Estrada, A., Vázquez-Acevedo, M., Cardol, P., Remacle, C., González-Halphen, D., Subunit Asa1 spans all the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. Biochim. Biophys. Acta, 2015 Nov 30, 10.1016/j.bbabio.2015.11.012 [pii: S0005-2728(15)00244-3, Epub ahead of print].
[27] Atteia, A., de Vitry, C., Pierre, Y., Popot, J.L., Identification of mitochondrial proteins in membrane preparations from Chlamydomonas reinhardtii. J. Biol. Chem. 267 (1992), 226–234.
[28] Atteia, A., Identification of mitochondrial respiratory proteins from the green alga Chlamydomonas reinhardtii. C. R. Acad. Sci. III. 317 (1994), 11–19.
[29] Franzén, L.G., Falk, G., Nucleotide sequence of cDNA clones encoding the beta subunit of mitochondrial ATP synthase from the green alga Chlamydomonas reinhardtii: the precursor protein encoded by the cDNA contains both an N-terminal presequence and a C-terminal extension. Plant Mol. Biol. 19 (1992), 771–780.
[30] Nurani, G., Franzén, L.-G., Isolation and characterization of the mitochondrial ATP synthase from Chlamydomonas reinhardtii. cDNA sequence and deduced protein sequence of the alpha subunit. Plant Mol. Biol. 31 (1996), 1105–1116.
[31] Gutiérrez-Cirlos, E.B., Antaramian, A., Vázquez-Acevedo, M., Coria, R., González-Halphen, D., A highly active ubiquinol-cytochrome c reductase (bc1 complex) from the colorless alga Polytomella spp., a close relative of Chlamydomonas. Characterization of the heme binding site of cytochrome c1. J. Biol. Chem. 269 (1994), 9147–9154.
[32] Atteia, A., Dreyfus, G., González-Halphen, D., Characterization of the alpha and beta-subunits of the F0F1-ATPase from the alga Polytomella spp., a colorless relative of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1320 (1997), 275–284.
[33] van Lis, R., Mendoza-Hernández, G., Groth, G., Atteia, A., New insights into the unique structure of the F0F1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. Plant Physiol. 144 (2007), 1190–1199.
[34] Schägger, H., Native Gel Electrophoresis. von Jagow, G., Schägger, H., (eds.) A Practical Guide to Membrane Protein Purification, 1994, Academic Press, San Diego, 81–104.
[35] Funes, S., Davidson, E., Claros, M.G., van Lis, R., Pérez-Martínez, X., Vázquez-Acevedo, M., King, M.P., González-Halphen, D., The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in, Chlamydomonas reinhardtii. J. Biol. Chem. 277 (2002), 6051–6058.
[36] van Lis, R., Atteia, A., Mendoza-Hernández, G., González-Halphen, D., Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol. 132 (2003), 318–330.
[37] Dudkina, N.V., Heinemeyer, J., Keegstra, W., Boekema, E.J., Braun, H.P., Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS Lett. 579 (2005), 5769–5772.
[38] Jänsch, L., Kruft, V., Schmitz, U.K., Braun, H.P., New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J. 9 (1996), 357–368.
[39] Guerrero-Castillo, S., Vázquez-Acevedo, M., González-Halphen, D., Uribe-Carvajal, S., In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. Biochim. Biophys. Acta 1787 (2009), 75–85.
[40] Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Maréchal-Drouard, L., Marshall, W.F., Qu, L.H., Nelson, D.R., Sanderfoot, A.A., Spalding, M.H., Kapitonov, V.V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S.M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C.L., Cognat, V., Croft, M.T., Dent, R., Dutcher, S., Fernández, E., Fukuzawa, H., González-Ballester, D., González-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P.A., Lemaire, S.D., Lobanov, A.V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J.V., Moseley, J., Napoli, C., Nedelcu, A.M., Niyogi, K., Novoselov, S.V., Paulsen, I.T., Pazour, G., Purton, S., Ral, J.P., Riaño-Pachón, D.M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S.L., Allmer, J., Balk, J., Bisova, K., Chen, C.J., Elias, M., Gendler, K., Hauser, C., Lamb, M.R., Ledford, H., Long, J.C., Minagawa, J., Page, M.D., Pan, J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A.M., Yang, P., Ball, S., Bowler, C., Dieckmann, C.L., Gladyshev, V.N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R.T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y.W., Jhaveri, J., Luo, Y., Martínez, D., Ngau, W.C., Otillar, B., Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev, I.V., D.S.Rokhsar, Grossman, A.R., The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318 (2007), 245–250.
[41] Cardol, P., Figueroa, F., Remacle, C., Franzén, L.-G., González-Halphen, D., Oxidative phosphorylation: building blocks and related components. Stern, David B., (eds.) The Chlamydomonas Sourcebook, Organellar and Metabolic Processes, Volume 2, 2009, Elsevier Inc., San Diego, 469–502.
[42] Cano-Estrada, A., Vázquez-Acevedo, M., Villavicencio-Queijeiro, A., Figueroa-Martínez, F., Miranda-Astudillo, H., Cordeiro, Y., Mignaco, J.A., Foguel, D., Cardol, P., Lapaille, M., Remacle, C., Wilkens, S., González-Halphen, D., Subunit–subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of Polytomella sp. Biochim. Biophys. Acta 1797 (2010), 1439–1448.
[43] Villavicencio-Queijeiro, A., Vázquez-Acevedo, M., Cano-Estrada, A., Zarco-Zavala, M., Tuena de Gómez, M., Mignaco, J.A., Freire, M.M., Scofano, H.M., Foguel, D., Cardol, P., Remacle, C., González-Halphen, D., The fully-active and structurally-stable form of the mitochondrial ATP synthase of Polytomella sp. is dimeric. J. Bioenerg. Biomembr. 41 (2009), 1–13.
[44] Villavicencio-Queijeiro, A., Pardo, J.P., González-Halphen, D., Kinetic and hysteretic behavior of ATP hydrolysis of the highly stable dimeric ATP synthase of Polytomella sp. Arch. Biochem. Biophys. 575 (2015), 30–37.
[45] Allegretti, M., Klusch, N., Mills, D.J., Vonck, J., Kühlbrandt, W., Davies, K.M., Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521 (2015), 237–240.
[46] Liu, S., Charlesworth, T.J., Bason, J.V., Montgomery, M.G., Harbour, M.E., Fearnley, I.M., Walker, J.E., The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species. Biochem. J. 468 (2015), 167–175.
[47] Symersky, J., Osowski, D., Walters, D.E., Mueller, D.M., Oligomycin frames a common drug-binding site in the ATP synthase. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 13961–13965.
[48] Baker, L.A., Watt, I.N., Runswick, M.J., Walker, J.E., Rubinstein, J.L., Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 11675–11680.
[49] Lau, W.C., Baker, L.A., Rubinstein, J.L., Cryo-EM structure of the yeast ATP synthase. J. Mol. Biol. 382 (2008), 1256–1264.
[50] Mellwig, C., Böttcher, B., A unique resting position of the ATP-synthase from chloroplasts. J. Biol. Chem. 278 (2003), 18544–18549.
[51] Ogilvie, I., Wilkens, S., Rodgers, A.J., Aggeler, R., Capaldi, R.A., The second stalk: the delta-b subunit connection in ECF1F0. Acta Physiol. Scand. Suppl. 643 (1988), 169–175.
[52] Dudkina, N.V., Sunderhaus, S., Braun, H.P., Boekema, E.J., Characterization of dimeric ATP synthase and cristae membrane ultrastructure from Saccharomyces and Polytomella mitochondria. FEBS Lett. 580 (2006), 3427–3432.
[53] Lapaille, M., Thiry, M., Perez, E., González-Halphen, D., Remacle, C., Cardol, P., Loss of mitochondrial ATP synthase subunit beta (Atp2) alters mitochondrial and chloroplastic function and morphology in Chlamydomonas. Biochim. Biophys. Acta 1797 (2010), 1533–1539.
[54] Dudkina, N.V., Oostergetel, G.T., Lewejohann, D., Braun, H.P., Boekema, E.J., Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography. Biochim. Biophys. Acta 1797 (2010), 272–277.
[55] Morales-Rios, E., Montgomery, M.G., Leslie, A.G., Walker, J.E., Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 13231–13236.
[56] Zhou, A., Rohou, A., Schep, D.G., Bason, J.V., Montgomery, M.G., Walker, J.E., Grigorieff, N., Rubinstein, J.L., Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. Elife, 2015, 10.7554/eLife.10180.
[57] Miranda-Astudillo, H., Cano-Estrada, A., Vázquez-Acevedo, M., Colina-Tenorio, L., Downie-Velasco, L,.A., Cardol, P., Remacle, C., Domínguez-Ramírez, L., González-Halphen, D., Interactions of subunits Asa2, Asa4 and Asa7 in the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. Biochim. Biophys. Acta 1837 (2014), 1–13.
[58] Velours, J., Arselin, G., The Saccharomyces cerevisiae ATP synthase. J. Bioenerg. Biomembr. 32 (2000), 383–390.
[59] Fritz, M., Müller, V., An intermediate step in the evolution of ATPases–the F1F0-ATPase from Acetobacterium woodii contains F-type and V-type rotor subunits and is capable of ATP synthesis. FEBS J. 274 (2007), 3421–3428.
[60] Mayer, F., Lim, J.K., Langer, J.D., Kang, S.G., Müller, V., Na + transport by the A1AO-ATP synthase purified from Thermococcus onnurineus and reconstituted into liposomes. J. Biol. Chem. 290 (2015), 6994–7002.
[61] Popot, J.L., Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu. Rev. Biochem. 79 (2010), 737–775.
[62] Teese, M.G., Langosch, D., Role of GxxxG motifs in transmembrane domain interactions. Biochemistry 54 (2015), 5125–5135.
[63] Arselin, G., Giraud, M.F., Dautant, A., Vaillier, J., Brèthes, D., Coulary-Salin, B., Schaeffer, J., Velours, J., The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. Eur. J. Biochem. 270 (2003), 1875–1884.
[64] Bustos, D.M., Velours, J., The modification of the conserved GXXXG motif of the membrane-spanning segment of subunit g destabilizes the supramolecular species of yeast ATP synthase. J. Biol. Chem. 280 (2005), 29004–29010.
[65] Saddar, S., Stuart, R.A., The yeast F(1)F(0)-ATP synthase: analysis of the molecular organization of subunit g and the importance of a conserved GXXXG motif. J. Biol. Chem. 280 (2005), 24435–24442.
[66] Van Raaij, M.J., Orriss, G.L., Montgomery, M.G., Runswick, M.J., Fearnley, I.M., Skehel, J.M., Walker, J.E., The ATPase inhibitor protein from bovine heart mitochondria: the minimal inhibitory sequence. Biochemistry 35 (1996), 15618–15625.
[67] Iino, R., Hasegawa, R., Tabata, K.V., Noji, H., Mechanism of inhibition by C-terminal alpha-helices of the epsilon subunit of Escherichia coli FoF1-ATP synthase. J. Biol. Chem. 284 (2009), 17457–17464.
[68] Zarco-Zavala, M., Morales-Ríos, E., Mendoza-Hernández, G., Ramírez-Silva, L., Pérez-Hernández, G., García-Trejo, J.J., The ζ subunit of the F1FO-ATP synthase of α-proteobacteria controls rotation of the nanomotor with a different structure. FASEB J. 28 (2014), 2146–2157.
[69] Vahrenholz, C., Riemen, G., Pratje, E., Dujon, B., Michaelis, G., Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Curr. Genet. 24 (1993), 241–247.
[70] Smith, D.R., Hua, J., Lee, R.W., Evolution of linear mitochondrial DNA in three known lineages of Polytomella. Curr. Genet. 56 (2010), 427–438.
[71] Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER suite: protein structure and function prediction. Nat. Methods 12 (2015), 7–8.
[72] Rees, D.M., Leslie, A.G.W., Walker, J.E., The structure of the membrane extrinsic region of bovine ATP Synthase. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 21597–21601.
[73] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25 (2004), 1605–1612.
[74] Zhou, A., Rohou, A., Schep, D.G., Bason, J.V., Montgomery, M.G., Walker, J.E., Grigorieff, N., Rubinstein, J.L., Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. Elife, 4, 2015, 10.7554/eLife.10180 (pii: e10180).