[en] A fundamental tenet of statistical rate theories (such
as transition state theory and RRKM) is the rapidity of
vibrational relaxation. Excited-state reactions happen quite
quickly (sub-picosecond) and thus can exhibit nonstatistical
behavior. However, it is often thought that any diversity of
photoproducts results from different conical intersections
connecting the excited and ground electronic states. It is also
conceivable that the large energy of the photon, which is
converted to vibrational energy after electronic transitions
could lead to athermal hot ground state reactions and that these
might be responsible for the diversity of photoproducts. Here
we show that this is the case for sulfines, where a single conical
intersection is implicated in the electronic transition but the
excited state reaction leads to nine different products within less
than a picosecond.
Disciplines :
Chemistry
Author, co-author :
Mignolet, Benoît ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Curchod, Basile
Martínez, Todd J.
Language :
English
Title :
Rich Athermal Ground‐State Chemistry Triggered by Dynamics through a Conical Intersection
Publication date :
2016
Journal title :
Angewandte Chemie International Edition
ISSN :
1433-7851
eISSN :
1521-3773
Publisher :
John Wiley & Sons, United Kingdom
Volume :
128
Issue :
48
Pages :
15217-15220
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy. BAEF - Belgian American Educational Foundation WBI - Wallonie-Bruxelles International
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
B. K. Carpenter, Annu. Rev. Phys. Chem. 2005, 56, 57–89;
B. K. Carpenter, Angew. Chem. Int. Ed. 1998, 37, 3340–3350;
Angew. Chem. 1998, 110, 3532–3543.
P. R. Schreiner, H. P. Reisenauer, J. Romanski, G. Mloston, J. Am. Chem. Soc. 2010, 132, 7240–7241;
H. P. Reisenauer, G. Mloston, J. Romanski, P. R. Schreiner, Eur. J. Org. Chem. 2011, 6269–6275;
L. Carlsen, N. Harrit, A. Holm, J. Chem. Soc. Perkin Trans. 1 1976, 1404–1407.
P. R. Schreiner, H. P. Reisenauer, J. Romanski, G. Mloston, Angew. Chem. Int. Ed. 2009, 48, 8133–8136;
Angew. Chem. 2009, 121, 8277–8280.
G. Karlstroem, B. O. Roos, L. Carlsen, J. Am. Chem. Soc. 1984, 106, 1557–1561.
M. Ben-Nun, T. J. Martínez, Adv. Chem. Phys. 2002, 121, 439–512;
B. G. Levine, J. D. Coe, A. M. Virshup, T. J. Martínez, Chem. Phys. 2008, 347, 3–16;
M. Ben-Nun, T. J. Martınez, J. Chem. Phys. 1998, 108, 7244–7257.
H. Tao, B. G. Levine, T. J. Martínez, J. Phys. Chem. A 2009, 113, 13656–13662.
W. Domcke, D. R. Yarkony, H. Koeppel, Conical intersections: electronic structure, dynamics and spectroscopy, Vol. 15, World Scientific, 2004;
W. Domcke, D. R. Yarkony, Annu. Rev. Phys. Chem. 2012, 63, 325–352;
G. A. Worth, L. S. Cederbaum, Annu. Rev. Phys. Chem. 2004, 55, 127–158;
B. G. Levine, T. J. Martínez, Annu. Rev. Phys. Chem. 2007, 58, 613–634.
M. Boggio-Pasqua, M. Ravaglia, M. J. Bearpark, M. Garavelli, M. A. Robb, J. Phys. Chem. A 2003, 107, 11139–11152.
V. Bonačić-Koutecký, J. Koutecký, J. Michl, Angew. Chem. Int. Ed. Engl. 1987, 26, 170–189;
Angew. Chem. 1987, 99, 216–236;
F. Bernardi, M. Olivucci, M. A. Robb, Chem. Soc. Rev. 1996, 25, 321–328.
R. A. Marcus, J. Chem. Phys. 1952, 20, 359–364.
S. Glasstone, H. Eyring, K. J. Laidler, The theory of rate processes, McGraw-Hill, New York, 1941.
B. K. Carpenter, Chem. Soc. Rev. 2006, 35, 736–747;
L. Sun, K. Song, W. L. Hase, Science 2002, 296, 875–878;
S. J. Greaves, R. A. Rose, T. A. A. Oliver, D. R. Glowacki, M. N. R. Ashfold, J. N. Harvey, I. P. Clark, G. M. Greetham, A. W. Parker, M. Towrie, A. J. Orr-Ewing, Science 2011, 331, 1423–1426;
K. Black, P. Liu, L. Xu, C. Doubleday, K. N. Houk, Proc. Natl. Acad. Sci. USA 2012, 109, 12860–12865.
W. Fuss, J. Photochem. Photobiol. A 2015, 297, 45–57;
M. H. Kim, L. Shen, H. Tao, T. J. Martinez, A. G. Suits, Science 2007, 315, 1561–1565.
M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules, Wiley-VCH, Weinheim, 1995;
R. Srinivasan, J. Am. Chem. Soc. 1963, 85, 4045–4046.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.