Abstract :
[en] Highly excited states of neutral molecules behave qualitatively differently than the lower excited states that are commonly studied in photochemistry. Such states are involved in ionospheric and astrochemical phenomena, as well as in detonation processes. However, highly excited states are poorly understood due to experimental and theoretical challenges in probing their complex dynamics. Here, we apply vacuum-UV femtosecond laser sources and an imaging photoelectron–photoion coincidence spectrometer to directly probe the surprisingly fast 25-fs reaction pathway of the energetic molecule methyl azide. Combined with advanced calculations, we conclude that the electronic relaxation is driven by strong nonadiabatic coupling and that population transfer occurs along a seam well above the minimum energy conical intersection.
Scopus citations®
without self-citations
9