Cell viability and hemocompatibility evaluation of a starch-based hydrogel loaded with hydroxyapatite or calcium carbonate for maxillofacial bone regeneration
Flores-Arriaga, Juan Carlos; Pozos-Guille´, Amaury; Escobar-Garcia, Dianaet al.
CEIB - Centre Interfacultaire des Biomatériaux - ULiège
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Flores-Arriaga, Juan Carlos
Pozos-Guille´, Amaury
Escobar-Garcia, Diana
Grandfils, Christian ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Cerda-Cristerna, Bernardino
Language :
English
Title :
Cell viability and hemocompatibility evaluation of a starch-based hydrogel loaded with hydroxyapatite or calcium carbonate for maxillofacial bone regeneration
Zhang D, George OJ, Petersen KM, Jimenez-Vergara AC, Hahn MS, Grunlan MA. A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-facial bone defects. Acta Biotamer. 2014;10:4597–605.
Anderud J, Jimbo R, Abrahamsson P, Adolfsson E, Malmoström J, Wennerberg A. The impact of surfae roughness and permeability in hydroxyapatite bone regeneration membranes. Clin Oral Implants Res. 2016;27:1047–54.
Materials ASTM. Standard guide for characterization of hydrogels used in regenerative medicine. ASTM. 2011;F2900(11):1–10.
Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL. Alternative tissue engineering scaffolds based on starch-processing methodologies, morphology, degradation and mechanical properties. Mater Sci Eng C Mater Biol Appl. 2002;20:19–26.
Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21:3307–29.
Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications. Int J Polym Mater. 2013;62:411–20.
Zhang LM. Perspectives on: strategies to fabricate starch-based hydrogels with potential biomedical applications. J Bioact Compat Polym. 2005;20:297–314.
Mendes SC, Reis RL, Bovell YP, Cunha AM, van Blitterswijk CA, de Bruijn JD. Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials. 2001;22:2057–64.
Silva GA, Costa FJ, Coutinho OP, Radin S, Ducheyne P, Reis RL. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. J Biomed Mater Res A. 2004;70:442–9.
Marques AP, Reis RL, Hunt JA. The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials. 2002;23:1471–8.
Gomes ME, Reis RL, Cunha AM, Blitterswijk CA, deBrujin JD. Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials. 2000;22:1911–7.
Alexandre N, Ribeiro J, Gartner A, Pereira T, Amorim I, Fragoso J, et al. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—in vitro and in vivo studies. J Biomed Mater Res A. 2014;102:4262–75.
Diaz-Rodriguez P, Gonzalez P, Serra J, Landin M. Key parameters in blood-surface interactions of 3D bioinspired ceramic materials. Mater Sci Eng C Mater Biol Appl. 2014;41:232–9.
Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A. The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg. 2012;10:96–10001.
Alviar CL, Tellez A, Wang M, Potts P, Smith D, Tsui M, et al. Low-dose sirolimus-eluting hydroxyapatite coating on stents does not increase platelet activation and adhesion ex vivo. J Thromb Thrombolysis. 2012;34:91–8.
Xia Y, Gu Y, Zhou X, Xu H, Zhao X, Yaseen M, et al. Controllable stabilization of poly(N-isopropylacrylamide)-based microgel films through biomimetic mineralization of calcium carbonate. Biomacromolecules. 2012;13:2299–308.
Wu YC, Lee TM, Chiu KH, Shaw SY, Yang CY. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J Mater Sci Mater Med. 2009;20:1273–80.
Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, et al. Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res A. 2008;87:203–14.
Garza E, Wadajkar A, Ahn Ch, Zu Q, Opperman L, Bellinger L, Nguyen K, Komabayashi T. Cytotoxicity evaluation of methacrylate-based resins for clinical endodontics in vitro. J Oral Sci. 2012;54:213–7.
Cerda-Cristerna BI, Flores H, Pozos-Guillen A, Perez E, Sevrin C, Grandfils C. Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers. J Control Release. 2011;153:269–77.
Gentile P, Chiono V, Boccafoschi F, Baino F, Vitale-Brovarone C, Vernè E, Barbani N, Ciardelli G. Composite films of gelatin and hydroxyapatite-bioactive glass for tissue-engineering applications. J Biomater Sci. 2010;21:1207–26.
Salgado AJ, Gomes ME, Chou A, Coutinho OP, Reis RL, Hutmacher DW. Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds. Mater Sci Eng C Mater Biol Appl. 2002;20:27–33.
Comín R, Musso LA, Cid MP, Oldani CR, Salvatierra NA. Citotoxicity of hydroxyapatite and morphology in composites with Ti. IEEE Lat Am T. 2013;11:97–100.
Shakir M, Jolly R, Khan MS, Iram NE, Khan HM. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: synthesis and in vitro studies. Int J Biol Macromol. 2015;80:282–92.
Sorrentino S, Studt JD, Medalia O, Tanuj Sapra K. Roll, adhere, spread and contract: structural mechanics of platelet function. Eur J Cell Biol. 2015;94:129–38.
Klein MO, Kammerer PW, Scholz T, Moergel M, Kirchmaier CM, Al-Nawas B. Modulation of platelet activation and initial cytokine release by alloplastic bone substitute materials. Clin Oral Implants Res. 2010;21:336–45.
Alexandre N, Costa E, Coimbra S, Silva A, Lopes A, Rodrigues M, et al. In vitro and in vivo evaluation of blood coagulation activation of polyvinyl alcohol hydrogel plus dextran-based vascular grafts. J Biomed Mater Res A. 2015;103:1366–79.
Narayanan D, Nair S, Menon D. A systematic evaluation of hydroxyethyl starch as a potential nanocarrier for parenteral drug delivery. Int J Biol Macromol. 2015;74:575–84.
Muthusubramaniam L, Lowe R, Fissell WH, Li L, Marchant RE, Desai TA, et al. Hemocompatibility of silicon-based substrates for biomedical implant applications. Ann Biomed Eng. 2011;39:1296–305.
Arimura S, Kawahara K, Biswas KK, Abeyama K, Tabata M, Shimoda T, et al. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation. J Biomed Mater Res B Appl Biomater. 2007;81:456–61.
Saikia JP, Banerjee S, Konwar BK, Kumar A. Biocompatible novel starch/polyaniline composites: characterization, anti-cytotoxicity and antioxidant activity. Colloids Surf B Biointerfaces. 2010;81:158–64.
Fu K, Xu Q, Czernuska J, Triffitt JT. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate compostie and its clinical implementation. Biomed Mater. 2013;8(6):065007.