Mukherjee, S.; Dinda, H.; Shashank, L.; Chakraborty, I.; Bhattacharyya, R.; Das Sarma, J.; Shunmugam, R. Site-specific amphiphilic magnetic copolymer nanoaggregates for dual imaging. Macromolecules 2015, 48, 6791-6800. [CrossRef]
Jim, C.K.W.; Qin, A.; Mahtab, F.; Lam, J.W.Y.; Tang, B.Z. Ferrocene-Functionalized disubstituted polyacetylenes with high light refractivity: Synthesis through polymer reaction by using click chemistry and application as precursors to magnetic nanoparticles. Chem. Asian J. 2011, 6, 2753-2761. [CrossRef] [PubMed]
Ho, C.-L.; Wong, W.-Y. Metal-containing polymers: facile tuning of photophysical traits and emerging applications in organic electronics and photonics. Coord. Chem. Rev. 2011, 255, 2469-2502. [CrossRef]
Al-Badri, Z.M.; Maddikeri, R.R.; Zha, Y.; Thaker, H.D.; Dobriyal, P.; Shunmugam, R.; Russell, T.P.; Tew, G.N. Room temperature magnetic materials from nanostructured diblock copolymers. Nat. Commun. 2011, 2. [CrossRef] [PubMed]
Dragutan, I.; Dragutan, V.; Demonceau, A. Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015, 20, 17244-17274. [CrossRef] [PubMed]
Mavila, S.; Diesendruck, C.E.; Linde, S.; Amir, L.; Shikler, R.; Lemcoff, N.G. Polycyclooctadiene Complexes of Rhodium(I): Direct Access to Organometallic Nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 5767-5770. [CrossRef] [PubMed]
Feng, W.; Zhang, Y.; Zhang, Z.; Su, P.; Lu, X.; Song, J.; Fan, D.; Wong, W.-K.; Jones, R.A.; Su, C. Near-infrared (NIR) luminescent metallopolymers based on Ln4(Salen)4 nanoclusters (Ln L' Nd or Yb). J. Mater. Chem. C 2014, 2, 1489-1499. [CrossRef]
Sankaran, N.B.; Rys, A.Z.; Nassif, R.; Nayak, M.K.; Metera, K.; Chen, B.; Bazzi, H.S.; Sleiman, H.F. Ring-Opening Metathesis Polymers for Biodetection and Signal Amplification: Synthesis and Self-Assembly. Macromolecules 2010, 43, 5530-5537. [CrossRef]
Rivard, E. Inorganic and organometallic polymers. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. 2010, 106, 391-409. [CrossRef]
Dragutan, V.; Dragutan, I.; Fischer, H. Synthesis of metal-containing polymers via ring opening metathesis polymerization (ROMP). Part I. Polymers containing main group metals. J. Inorg. Organomet. Polym. Mater. 2008, 18, 18-31. [CrossRef]
Karabulut, S.; Aydogdu, C.; Düz, B.; İmamoǧlu, Y. Metal-containing polymers synthesized via acyclic diene metathesis (ADMET) polymerization using electrochemically reduced tungsten-based catalyst: Polycarbosilanes. J. Inorg. Organomet. Polym. Mater. 2007, 17, 517-523. [CrossRef]
Karabulut, S.; Aydogdu, C.; Düz, B.; İmamoǧlu, Y. Metal-Containing Polymers Synthesized via Acyclic Diene Metathesis (ADMET) Polymerization Using Electrochemically Reduced Tungsten-Based Catalyst: Polycarbogermanes. J. Inorg. Organomet. Polym. Mater. 2006, 16, 115-122. [CrossRef]
Dragutan, I.; Dragutan, V.; Fischer, H. Synthesis of metal-containing polymers via ring opening metathesis polymerization (ROMP). Part II. Polymers containing transition metals. J. Inorg. Organomet. Polym. Mater. 2008, 18, 311-324. [CrossRef]
Dragutan, I.; Dragutan, V.; Simionescu, B.C.; Demonceau, A.; Fischer, H. Recent advances in metathesis-derived polymers containing transition metals in the side chain. Beilstein J. Org. Chem. 2015, 11, 2747-2762. [CrossRef]
Breul, A.M.; Kübel, J.; Häupler, B.; Friebe, C.; Hager, M.D.; Winter, A.; Dietzek, B.; Schubert, U.S. Synthesis and Characterization of Poly(phenylacetylene)s with Ru(II) Bis-Terpyridine Complexes in the Side-Chain. Macromol. Rapid Commun. 2014, 35, 747-751. [CrossRef] [PubMed]
Hardy, C.G.; Ren, L.; Ma, S.; Tang, C. Self-assembly of well-defined ferrocene triblock copolymers and their template synthesis of ordered iron oxide nanoparticles. Chem. Commun. 2013, 49, 4373-4375. [CrossRef] [PubMed]
Hardy, C.G.; Ren, L.; Zhang, J.; Tang, C. Side-Chain Metallocene-Containing Polymers by Living and Controlled Polymerizations. Isr. J. Chem. 2012, 52, 230-245. [CrossRef]
Abd-El-Aziz, A.S.; Shipman, P.O.; Boden, B.N.; McNeil, W.S. Synthetic methodologies and properties of organometallic and coordination macromolecules. Progr. Polym. Sci. 2010, 35, 714-836. [CrossRef]
Zeits, P.D.; Fiedler, T.; Gladysz, J.A. Ring opening metathesis polymerization of an g4-benzene complex: A direct synthesis of a polyacetylene with a regular pattern of p bound metal fragments. Chem. Commun. 2012, 48, 7925-7927. [CrossRef] [PubMed]
Hardy, C.G.; Zhang, J.; Yan, Y.; Ren, L.; Tang, C. Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques. Progr. Polym. Sci. 2014, 39, 1742-1796. [CrossRef]
Gao, Y.; Kogler, F.R.; Peterlik, H.; Schubert, U.S. Ring-opening metathesis polymerizations with norbornene carboxylate-substituted metal oxo clusters. J. Mater. Chem. 2006, 16, 3268-3276. [CrossRef]
Russell, A.D.; Musgrave, R.A.; Stoll, L.K.; Choi, P.; Qiu, H.; Manners, I. Recent developments with strained metallocenophanes. J. Organomet. Chem. 2015, 784, 24-30. [CrossRef]
Wild, A.; Winter, A.; Hager, M.D.; Görls, H.; Schubert, U.S. Perfluorophenyl-Terpyridine Ruthenium Complex as Monomer for Fast, Efficient, and Mild Metallopolymerizations. Macromol. Rapid Commun. 2012, 33, 517-521. [CrossRef] [PubMed]
Schrock, R.R. High-Oxidation State Molybdenum and Tungsten Complexes Relevant to Olefin Metathesis. In Handbook of Metathesis Vol. 1: Catalyst Development and Mechanism, 2nd ed.; Grubbs, R.H., Wenzel, A.G., Eds.; Wiley-VCH: Weinheim, Germany, 2015; pp. 1-32.
Vougioukalakis, G.C. Ruthenium-Benzylidene Olefin Metathesis Catalysts. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 397-416.
Grubbs, R.H., Wenzel, A.G., Eds.; Handbook of Metathesis, Volume 1: Catalyst Development and Mechanism, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2015.
Grubbs, R.H., Wenzel, A.G., O'Leary, D.J., Khosravi, E., Eds.; Handbook of Metathesis, Volume 1-3, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2015.
Schrock, R.R.; Feldman, J.; Cannizzo, L.F.; Grubbs, R.H. Ring-opening polymerization of norbornene by a living tungsten alkylidene complex. Macromolecules 1987, 20, 1169-1172. [CrossRef]
Grubbs, R.H.; Tumas, W. Polymer synthesis and organotransition metal chemistry. Science 1989, 243, 907-915. [CrossRef] [PubMed]
Risse, W.; Wheeler, D.R.; Cannizzo, L.F.; Grubbs, R.H. Di- and tetrafunctional initiators for the living ring-opening olefin metathesis polymerization of strained cyclic olefins. Macromolecules 1989, 22, 3205-3210. [CrossRef]
Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S., Eds.; Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology; Springer: Dordrecht, The Netherlands, 2010.
Cannizzo, L.F.; Grubbs, R.H. Block copolymers containing monodisperse segments produced by ring-opening metathesis of cyclic olefins. Macromolecules 1988, 21, 1961-1967. [CrossRef]
Amer, W.A.; Wang, L.; Amin, A.M.; Ma, L.; Yu, H. Recent progress in the synthesis and applications of some ferrocene derivatives and ferrocene-based polymers. J. Inorg. Organomet. Polym. Mater. 2010, 20, 605-615. [CrossRef]
Abd-El-Aziz, A.S.; Manners, I. Neutral and Cationic Macromolecules based on Iron Sandwich Complexes. J. Inorg. Organomet. Polym. Mater. 2005, 15, 157-195. [CrossRef]
Stanton, E.; Lee, T.R.; Grubbs, R.H.; Lewis, N.S.; Pudelski, J.K.; Callstrom, M.; Erickson, M.S.; McLaughlin, M.L. Routes to Conjugated Polymers with Ferrocenes in Their Backbones: Synthesis and Characterization of Poly(ferrocenylenedivinylene) and Poly(ferrocenylenebutenylene). Macromolecules 1995, 28, 8713-8721. [CrossRef]
Heo, R.W.; Park, J.-S.; Goodson, J.T.; Claudio, G.C.; Takenaga, M.; Albright, T.A.; Lee, T.R. ROMP of t-Butyl-Substituted Ferrocenophanes Affords Soluble Conjugated Polymers that Contain Ferrocene Moieties in the Backbone. Tetrahedron 2004, 60, 7225-7235. [CrossRef]
Heo, R.W.; Somoza, F.; Lee, T.R. Soluble Conjugated Polymers that Contain Ferrocenylene Units in the Backbone. J. Am. Chem. Soc. 1998, 120, 1621-1622. [CrossRef]
Buretea, M.A.; Don Tilley, T. Poly(ferrocenylenevinylene) from Ring-Opening Metathesis Polymerization of ansa-(Vinylene)ferrocene. Organometallics 1997, 16, 1507-1510. [CrossRef]
Masson, G.; Lough, A.J.; Manners, I. Soluble poly(ferrocenylenevinylene) with t-butyl substituents on the cyclopentadienyl ligands via ring-opening metathesis polymerization. Macromolecules 2008, 41, 539-547. [CrossRef]
Watson, K.J.; Nguyen, S.T.; Mirkin, C.A. The synthesis and ring-opening metathesis polymerization of an amphiphilic redox-active norbornene. J. Organomet. Chem. 2000, 606, 79-83. [CrossRef]
Abd-El-Aziz, A.S.; May, L.J.; Hurd, J.A.; Okasha, R.M. First ring-opening metathesis polymerization of norbornenes containing cationic iron moieties. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2716-2722. [CrossRef]
Abd-El-Aziz, A.S.; Okasha, R.M.; May, L.J.; Hurd, J.A. Synthesis of norbornenes containing cationic monoand di(cyclopentadienyliron)arene complexes and their ring-opening metathesis polymerization. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 3053-3070. [CrossRef]
Abd-El-Aziz, A.S.; Okasha, R.M.; Afifi, T.H.; Todd, E.K. A New Class of Cationic Organoiron Polynorbornenes Containing Azo Dyes. Macromol. Chem. Phys. 2003, 204, 555-563. [CrossRef]
Abd-El-Aziz, A.S.; Okasha, R.M.; Afifi, T.H. First Example of Benzothiazole Azo Dyes Containing Cyclopentadienyliron Polynorbornene Macromolecules. J. Inorg. Organomet. Polym. 2004, 14, 269-278. [CrossRef]
Gu, H.; Rapakousiou, A.; Castel, P.; Guidolin, N.; Pinaud, N.; Ruiz, J.; Astruc, D. Living Ring-Opening Metathesis-Polymerization Synthesis and Redox-Sensing Properties of Norbornene Polymers and Copolymers Containing Ferrocenyl and Tetraethylene Glycol Groups. Organometallics 2014, 33, 4323-4335. [CrossRef]
Rapakousiou, A.; Deraedt, C.; Irigoyen, J.; Wang, Y.; Pinaud, N.; Salmon, L.; Ruiz, J.; Moya, S.; Astruc, D. Synthesis and Redox Activity of "Clicked" Triazolylbiferrocenyl Polymers, Network Encapsulation of Gold and Silver Nanoparticles and Anion Sensing. Inorg. Chem. 2015, 54, 2284-2299. [CrossRef] [PubMed]
Zha, Y.; Thaker, H.D.; Maddikeri, R.R.; Gido, S.P.; Tuominen, M.T.; Tew, G.N. Nanostructured block-random copolymers with tunable magnetic properties. J. Am. Chem. Soc. 2012, 134, 14534-14541. [CrossRef] [PubMed]
Ciganda, R.; Gu, H.; Castel, P.; Zhao, P.; Ruiz, J.; Hernández, R.; Astruc, D. Living ROMP Synthesis and Redox Properties of Diblock Ferrocene/Cobalticenium Copolymers. Macromol. Rapid Commun. 2015. [CrossRef] [PubMed]
Gu, H.; Dr. Ciganda, R.; Castel, P.; Vax, A.; Gregurec, D.; Irigoyen, J.; Moya, S.; Salmon, L.; Zhao, P.; Ruiz, J.; et al. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI, and Au Nanoparticles. Chem. Eur. J. 2015, 21, 18177-18186. [CrossRef] [PubMed]
Gu, H.; Ciganda, R.; Hernandez, R.; Castel, P.; Zhao, P.; Ruiz, J.; Astruc, D. ROMP Synthesis and Redox Properties of Polycationic Metallopolymers Containing the Electron-Reservoir Complex [Fe(η5-C5H5)(η6-C6Me6)][PF6]. Macromolecules 2015, 48, 6071-6076. [CrossRef]
Astruc, D.; Ornelas, C.; Ruiz, J. Ferrocenyl-terminated dendrimers: Design for applications in molecular electronics, molecular recognition and catalysis. J. Inorg. Organomet. Polym. Mater. 2008, 18, 1-4. [CrossRef]
Diallo, A.K.; Ruiz, J.; Astruc, D. Synthesis, Redox Activity of Rigid Ferrocenyl Dendrimers, and Isolation of Robust Ferricinium and Class-II Mixed-Valence Dendrimers. Chem. Eur. J. 2013, 19, 8913-8921. [CrossRef] [PubMed]
Astruc, D.; Ruiz, J. On the Redox Chemistry of Ferrocenes and Other Iron Sandwich Complexes and Its Applications. J. Inorg. Organomet. Polym. Mater. 2015, 25, 330-338. [CrossRef]
Gatard, S.; Deraedt, C.; Rapakousiou, A.; Sonet, D.; Salmon, L.; Ruiz, J.; Astruc, D. New Polysilyl Dendritic Precursors of Triazolylferrocenyl and Triazolylcobalticenium Dendrimers-Comparative Electrochemical Study and Stabilization of Small, Catalytically Active Pd Nanoparticles. Organometallics 2015, 34, 1643-1650. [CrossRef]
Martinez, V.; Blais, J.-C.; Bravic, C.; Astruc, D. Coupling Multiple Benzylic Activation of Simple Arenes by CpFe+ with Multiple Alkene Metathesis Using Grubbs Catalysts: An Efficient Carbon-Carbon Bond Formation Strategy Leading to Polycycles, Cyclophanes, Capsules, and Polymeric Compounds and Their CpFe+ Complexes. Organometallics 2004, 23, 861-874.
Astruc, D.; Martinez, V. The Olefin Metathesis Reactions Combined with Organo-Iron Arene Activation Towards Dendrimers, and Polymers. In Metathesis Chemistry: From Nanostructure Design to Synthesis of Advanced Materials; Imamoglu, Y., Dragutan, V., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 223-236.