[en] The binomial coefficient (u,v) of two finite words u and v (on a finite alphabet) is the number of times the word v appears inside the word u as a subsequence (or, as a "scattered" subword). For instance, (abbabab,ab)=4. This concept naturally extends the classical binomial coefficients of integers, and has been widely studied for about thirty years (see, for instance, Simon and Sakarovitch). In this talk, I present the research lead from October 2015 on an extension of the Pascal triangles to base-2 expansions of integers. In a first part, I define two new objects that both generalize the classical Pascal triangle and the Sierpinski gasket. In a second part, I define a new sequence extracted from the Pascal triangle in base 2 and study its regularity. In a third part, I exhibit an exact formula for the behavior of the summatory function of the latter sequence.
Disciplines :
Mathematics
Author, co-author :
Stipulanti, Manon ; Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Pascal triangles and Sierpiński gasket extended to binomial coefficients of words
Publication date :
29 November 2017
Number of pages :
90
Event name :
Journée Scientifique Charles Hermite "Théorie des nombres et théorie des graphes"
Event organizer :
Institut Élie Cartan de Lorraine (IECL) et Laboratoire lorrain de recherche en informatique et ses applications (LORIA)
Event place :
Nancy, France
Event date :
29 novembre 2017
By request :
Yes
Audience :
International
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Commentary :
Work in collaboration with Julien Leroy (ULg, j.leroy@ulg.ac.be) and Michel Rigo (ULg, m.rigo@ulg.ac.be). // Travail en collaboration avec Julien Leroy (ULg, j.leroy@ulg.ac.be) et Michel Rigo (ULg, m.rigo@ulg.ac.be).