Abe M, Nakazawa T (1994) Characterization of hemolytic and antifungal substance, cepalycin, from Pseudomonas cepacia. Microbiol Immunol 38:1–9. doi:10.1111/j.1348-0421.1994.tb01737.x
Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, Kolter R, Vincent PA (2012) Catecholate Siderophores protect Bacteria from Pyochelin toxicity. PLoS One 7:e46754. doi:10.1371/journal.pone.0046754
Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. doi:10.1016/s0168-6445(03)00055-x
Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319. doi:10.1104/pp.103.028712
Balibar CJ, Vaillancourt FH, Walsh CT (2005) Generation of D amino acid residues in assembly of Arthrofactin by dual condensation/epimerization domains. Chem Biol 12:1189–1200. doi:10.1016/j.chembiol.2005.08.010
Barelmann I, Meyer J-M, Taraz K, Budzikiewicz H (1996) Cepaciachelin, a new Catecholate Siderophore from Burkholderia (Pseudomonas) Cepacia. Z Naturforsch 51C:627–630
Bibb MJ (2005) Regulation of secondary metabolism in Streptomycetes. Curr Opin Microbiol 8:208–215. doi:10.1016/j.mib.2005.02.016
Biggins JB, Gleber CD, Brady SF (2011a) Acyldepsipeptide HDAC inhibitor production induced in Burkholderia thailandensis. Org Lett 13:1536–1539. doi:10.1021/ol200225v
Biggins JB, Liu X, Feng Z, Brady SF (2011b) Metabolites from the induced expression of cryptic single operons found in the genome of Burkholderia pseudomallei. J Am Chem Soc 133:1638–1641. doi:10.1021/ja1087369
Biggins JB, Ternei MA, Brady SF (2012) Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J Am Chem Soc 134:13192–13195. doi:10.1021/ja3052156
Biggins JB, Kang H-S, Ternei MA, DeShazer D, Brady SF (2014) The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity. J Am Chem Soc 136:9484–9490. doi:10.1021/ja504617n
Bisacchi GS, Hockstein DR, Koster WH, Parker WL, Rathnum ML, Unger SE (1987) Xylocandin: a new complex of antifungal peptides. II. Structural studies and chemical modifications. J Antibiot 40:1520–1529. doi:10.7164/antibiotics.40.1520
Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319. doi:10.1128/AEM.00324-07
Caradec T, Pupin M, Vanvlassenbroeck A, Devignes M-D, Smaïl-Tabbone M, Jacques P, Leclère V (2014) Prediction of monomer isomery in Florine: a workflow dedicated to nonribosomal peptide discovery. PLoS One 9:e85667. doi:10.1371/journal.pone.0085667
Carr G, Seyedsayamdost MR, Chandler JR, Greenberg EP, Clardy J (2011) Sources of diversity in Bactobolin Biosynthesis by Burkholderia thailandensis E264. Org Lett 13:3048–3051. doi:10.1021/ol200922s
Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, Hauser L, Córdova M, Gómez L, González M (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A 103:15280–15287. doi:10.1073/pnas.0606924103
Chen W-M, James EK, Coenye T, Chou J-H, Barrios E, De Faria SM, Elliott GN, Sheu S-Y, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851. doi:10.1099/ijs.0.64325-0
Chen W-M, De Faria SM, James EK, Elliott GN, Lin K-Y, Chou J-H, Sheu S-Y, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059. doi:10.1099/ijs.0.64873-0
Cornelis P (2010) Iron uptake and metabolism in Pseudomonads. Appl Microbiol Biotechnol 86:1637–1645. doi:10.1007/s00253-010-2550-2
Cox CD, Graham R (1979) Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 137:357–364
Crosa JH (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53:517–530
Czárán TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci 99:786–790. doi:10.1073/pnas.012399899
Darling P, Chan M, Cox AD, Sokol PA (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877
Du L, Sánchez C, Shen B (2001) Hybrid peptide–polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 3:78–95. doi:10.1006/mben.2000.0171
Ellis D, Gosai J, Emrick C, Heintz R, Romans L, Gordon D, Lu S-E, Austin F, Smith L (2012) Occidiofungin’s chemical stability and in vitro potency against Candida species. Antimicrob Agents Chemother 56:765–769. doi:10.1128/aac.05231-11
Esmaeel Q, Pupin M, Kieu NP, Chataigné G, Béchet M, Deravel J, Krier F, Höfte M, Jacques P, Leclère V (2016) Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. MicrobiologyOpen 5(3):512–526. doi:10.1002/mbo3.347
Franke J, Ishida K, Hertweck C (2012) Genomics-driven discovery of Burkholderic acid, a Noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew Chem Int Ed 51:11611–11615. doi:10.1002/anie.201205566
Franke J, Ishida K, Ishida-Ito M, Hertweck C (2013) Nitro versus hydroxamate in siderophores of pathogenic bacteria: effect of missing hydroxylamine protection in malleobactin biosynthesis. Angew Chem Int Ed 52:8271–8275. doi:10.1002/anie.201303196
Franke J, Ishida K, Hertweck C (2014) Evolution of Siderophore pathways in human pathogenic Bacteria. J Am Chem Soc 136:5599–5602. doi:10.1021/ja501597w
Gu G, Smith L, Wang N, Wang H, Lu S-E (2009) Biosynthesis of an antifungal oligopeptide in Burkholderia contaminans strain MS14. Biochem Biophys Res Commun 380:328–332. doi:10.1016/j.bbrc.2009.01.073
Gu G, Smith L, Liu A, Lu S-E (2011) Genetic and biochemical map for the Biosynthesis of Occidiofungin, an antifungal produced by Burkholderia contaminans strain MS14. Appl Environ Microbiol 77:6189–6198. doi:10.1128/aem.00377-11
Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed 48:4688–4716. doi:10.1002/anie.200806121
Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657. doi:10.1039/B906679A
Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528. doi:10.1099/00221287-147-9-2517
Ishida K, Lincke T, Behnken S, Hertweck C (2010) Induced biosynthesis of cryptic polyketide metabolites in a Burkholderia thailandensis quorum sensing mutant. J Am Chem Soc 132:13966–13968. doi:10.1021/ja105003g
Jain A, Liu X, Wordinger RJ, Yorio T, Cheng Y-Q, Clark AF (2013) Effects of thailanstatins on glucocorticoid response in trabecular meshwork and steroid-induced glaucoma. Invest Ophthalmol Vis Sci 54:3137
Kang Y, Carlson R, Tharpe W, Schell MA (1998) Characterization of genes involved in Biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in Biological control of Rhizoctonia solani. Appl Environ Microbiol 64:3939–3947
Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590. doi:10.1046/j.1365-2958.2003.03584.x
Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011) Evolution of an endofungal lifestyle: deductions from the Burkholderia rhizoxinica genome. BMC Genomics 12:1–13. doi:10.1186/1471-2164-12-210
Lafontaine JA, Provencal DP, Gardelli C, Leahy JW (2003) Enantioselective total synthesis of the antitumor macrolide rhizoxin D. J Org Chem 68:4215–4234. doi:10.1021/jo034011x
Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483. doi:10.1007/s00203-006-0163-z
Lee CH, Kim S, Hyun B, Suh JW, Yon C, Kim C, Lim Y, Kim C (1994) Cepacidine a, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation and biological activity. J Antibiot 47:1402–1405. doi:10.7164/antibiotics.47.1402
Lee CH, Suh JW, Cho YH (1999) Immunosuppressive activity of cepacidine a, a novel antifungal antibiotic produced by Pseudomonas cepacia. J Microbiol Biotechnol 9:672–674
Lee CH, Kempf HJ, Lim Y, Cho YH (2000) Biocontrol activity of Pseudomonas cepacia AF2001 and anthelmintic activity of its novel metabolite, cepacidine A. J Microbiol Biotechnol 10:568–571
Lewenza S, Conway B, Greenberg E, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756
Lim Y, J-w S, Kim S, Hyun B, Kim C, Lee C-h (1994) Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. II Physico-chemical properties and structure elucidation. J Antibiot 47:1406–1416. doi:10.7164/antibiotics.47.1406
Lin Z, Falkinham JO III, Tawfik KA, Jeffs P, Bray B, Dubay G, Cox JE, Schmidt EW (2012) Burkholdines from Burkholderia ambifaria: antifungal agents and possible virulence factors. J Nat Prod 75:1518–1523. doi:10.1021/np300108u
Liu X, Biswas S, Berg MG, Antapli CM, Xie F, Wang Q, Tang M-C, Tang G-L, Zhang L, Dreyfuss G (2013) Genomics-guided discovery of thailanstatins A, B, and C as pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J Nat Prod 76:685–693. doi:10.1021/np300913h
Loper JE, Henkels MD, Shaffer BT, Valeriote FA, Gross H (2008) Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74. doi:10.1128/aem.02848-07
Lu SE, Novak J, Austin FW, Gu G, Ellis D, Kirk M, Wilson-Stanford S, Tonelli M, Smith L (2009) Occidiofungin, a unique antifungal Glycopeptide produced by a strain of Burkholderia contaminans. Biochemist 48:8312–8321. doi:10.1021/bi900814c
Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156. doi:10.1038/nrmicro1085
Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551. doi:10.1111/j.1365-2672.2007.03706.x
Marahiel MA (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15:799–807. doi:10.1002/psc.1183
Meyers E, Bisacchi G, Dean L, Liu W, Minassian B, Slusarchyk D, Sykes R, Tanaka S, Trejo W (1987) Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J Antibiot 40:1515–1519. doi:10.7164/antibiotics.40.1515
Miotto-Vilanova L, Jacquard C, Courteaux B, Wortham L, Michel J, Clément C, Barka EA, Sanchez L (2016) Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization. Front Plant Sci 7. doi:10.3389/fpls.2016.01236
Nakajima H, Hori Y, Terano H, Okuhara M, Manda T, Matsumoto S, Shimomura K (1996) New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot 49:1204–1211
Nakajima H, Takase S, Terano H, Tanaka H (1997) New antitumor substances, FR901463, FR901464 and FR901465. III. Structures of FR901463, FR901464 and FR901465. J Antibiot 50:96–99. doi:10.7164/antibiotics.50.96
Oka M, Nishiyama Y, Ohta S, Kamei H, Konishi M, Miyaki T, Oki T, Kawaguchi H (1988) Glidobactins a, B and C, new antitumor antibiotics. I. Production, isolation, chemical properties and biological activity. J Antibiot 41:1331–1337. doi:10.7164/antibiotics.41.1331
Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi:10.1016/j.tim.2007.12.009
Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888. doi:10.1038/nature03997
Partida-Martinez LP, Hertweck C (2007) A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus. Chembiochem 8:41–45. doi:10.1002/cbic.200600393
Partida-Martinez LP, de Looß CF, Ishida K, Ishida M, Roth M, Buder K, Hertweck C (2007) Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl Environ Microbiol 73:793–797. doi:10.1128/AEM.01784-06
Pupin M, Esmaeel Q, Flissi A, Dufresne Y, Jacques P, Leclère V (2015) Norine: a powerful resource for novel nonribosomal peptide discovery. Synth Syst Biotechnol. doi:10.1016/j.synbio.2015.11.001
Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11. doi:10.1111/j.1574-6968.2005.00001.x
Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618. doi:10.1093/jac/dkl024
Royer M, Koebnik R, Marguerettaz M, Barbe V, Robin G, Brin C, Carrere S, Gomez C, Hugelland M, Voller G, Noell J, Pieretti I, Rausch S, Verdier V, Poussier S, Rott P, Sussmuth R, Cociancich S (2013) Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides. BMC Genomics 14:658. doi:10.1186/1471-2164-14-658
Schellenberg B, Bigler L, Dudler R (2007) Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ Microbiol 9:1640–1650. doi:10.1111/j.1462-2920.2007.01278.x
Schett G, Sloan VS, Stevens RM, Schafer P (2010) Apremilast: a novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases. Ther Adv Musculoskelet Dis 2:271–278. doi:10.1177/1759720x10381432
Schlegel K, Taraz K, Budzikiewicz H (2004) The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. Biometals 17:409–414
Seyedsayamdost MR, Chandler JR, Blodgett JAV, Lima PS, Duerkop BA, Oinuma K-I, Greenberg EP, Clardy J (2010) Quorum-sensing-regulated Bactobolin production by Burkholderia thailandensis E264. Org Lett 12:716–719. doi:10.1021/ol902751x
Sharma A, Johri B (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS 9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248. doi:10.1078/0944-5013-00197
Shoji J, Hinoo H, Kato T, Hattori T, Hirooka K, Tawara K, Shiratori O, Terui Y (1990) Isolation of cepafungins I, II and III from Pseudomonas species. J Antibiot 43:783–787. doi:10.7164/antibiotics.43.783
Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C (1999) Role of Ornibactin Biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the Gene encoding l-ornithine N(5)-oxygenase. Infect Immun 67:4443–4455
Tawfik KA, Jeffs P, Bray B, Dubay G, Falkinham JO III, Mesbah M, Youssef D, Khalifa S, Schmidt EW (2010) Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2 N. Org Lett 12:664–666. doi:10.1021/ol9029269
Thomas MS (2007) Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 20:431–452. doi:10.1007/s10534-007-9100-0
Thomson ELS, Dennis JJ (2012) A Burkholderia cepacia complex non-ribosomal peptide-synthesized toxin is hemolytic and required for full virulence. Virulence 3:286–298. doi:10.4161/viru.19355
Tseng C-F, Burger A, Mislin GL, Schalk IJ, Yu SS-F, Chan SI, Abdallah MA (2006) Bacterial siderophores: the solution stoichiometry and coordination of the Fe (III) complexes of pyochelin and related compounds. JBIC, J Biol Inorg Chem 11:419–432. doi:10.1007/s00775-006-0088-7
Van Lanen SG, Shen B (2006) Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol 9:252–260. doi:10.1016/j.mib.2006.04.002
Van Vliet AH, Wooldridge KG, Ketley JM (1998) Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298
VanderMolen KM, McCulloch W, Pearce CJ, Oberlies NH (2011) Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J Antibiot 64:525–531
Vial L, Groleau M-C, Dekimpe V, Déziel É (2007) Burkholderia diversity and versatility: an inventory of the extracellular products. J Microbiol Biotechnol 17:1407–1429
Visser M, Majumdar S, Hani E, Sokol P (2004) Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun 72:2850–2857. doi:10.1128/IAI.72.5.2850-2857.2004
Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41:4–10. doi:10.1021/ar7000414
Wang C, Henkes LM, Doughty LB, He M, Wang D, Meyer-Almes F-J, Cheng Y-Q (2011) Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J Nat Prod 74:2031–2038. doi:10.1021/np200324x
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucl Acids Res. doi:10.1093/nar/gkv437
Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. Nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov. Microbiol Immunol 36:1251–1275. doi:10.1111/j.1348-0421.1992.tb02129.x
Zhou H, Yao F, Roberts DP, Lessie TG (2003) AHL-deficient mutants of Burkholderia ambifaria BC-F have decreased antifungal activity. Curr Microbiol 47:0174–0179. doi:10.1007/s00284-002-3926-z
Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The natural product domain seeker NaPDoS: a phylogeny based Bioinformatic tool to classify secondary metabolite Gene diversity. PLoS One 7:e34064. doi:10.1371/journal.pone.0034064