[en] A smart heating controller has a twofold objective: to save as much energy as possible while
maintaining an acceptable comfort level in the building. Due to very large time constants in the building response, it has to anticipate internal and external disturbances. In the case of a passive solar commercial building, the need for anticipation is reinforced by important solar and internal gains. Indeed, large solar gains increase the energy savings potential but also the overheating risk. Optimal control theory presents an ideal formalism to solve this problem : its principle is to anticipate the building behaviour using a model and a forecasting of the disturbances in order to compute the control sequence that minimises a given cost function over the optimisation horizon. This cost function can combine comfort level and
energy consumption. This paper presents the application of optimal control to auxiliary heating of a passive solar commercial building. Simulation-based and experimental results show that it can lead to significant energy savings while maintaining or improving the comfort level in this type of building.
Disciplines :
Energy
Author, co-author :
Kummert, M.
Andre, Philippe ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Surveillance de l'environnement
Nicolas, Jacques ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Surveillance de l'environnement
Language :
English
Title :
Optimal heating control in a passive solar commercial building