Conférence scientifique dans des universités ou centres de recherche (Conférences scientifiques dans des universités ou centres de recherche)
From combinatorial games to shape-symmetric morphisms
Rigo, Michel
2017
 

Documents


Texte intégral
Rigo.pdf
Preprint Auteur (1.96 MB)
Beamer of the 3 courses
Télécharger
Annexes
Rigo-lecture3.pdf
Postprint Éditeur (1.41 MB)
Updated lecture for the third lecture
Télécharger

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Combinatorial game; words; multidimensional; formal language; numeration system; shape-symmetry
Résumé :
[en] The general aim of these lectures is to present some interplay between combinatorial game theory (CGT) and combinatorics on (multidimensional) words. In the first introductory lecture, we present some basic concepts from combinatorial game theory (positions of a game, Nim-sum, Sprague-Grundy function, Wythoff's game, ...). We also review some concepts from combinatorics on words. We thus introduce the well-known k-automatic sequences and review some of their characterizations (in terms of morphisms, finiteness of their k-kernel,...). These sequences take values in a finite set but the Sprague-Grundy function of a game, such as Nim of Wythoff, is usually unbounded. This provides a motivation to introduce k-regular sequences (in the sense of Allouche and Shallit) whose k-kernel is not finite, but finitely generated. In the second lecture, games played on several piles of token naturally give rise to a multidimensional setting. Thus, we reconsider k-automatic and k-regular sequences in this extended framework. In particular, determining the structure of the bidimensional array encoding the (loosing) P-positions of the Wythoff's game is a long-standing and challenging problem in CGT. Wythoff's game is linked to non-standard numeration system: P-positions can be determined by writing those in the Fibonacci system. Next, we present the concept of shape-symmetric morphism: instead of iterating a morphism where images of letters are (hyper-)cubes of a fixed length k, one can generalize the procedure to images of various parallelepipedic shape. The shape-symmetry condition introduced twenty years ago by Maes permits to have well-defined fixed point. In the last lecture, we move to generalized numeration systems: abstract numeration systems (built on a regular language) and link them to morphic (multidimensional) words. In particular, pictures obtained by shape-symmetric morphisms coincide with automatic sequences associated with an abstract numeration system. We conclude these lectures with some work in progress about games with a finite rule-set. This permits us to discuss a bit Presburger definable sets.
Disciplines :
Mathématiques
Auteur, co-auteur :
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Langue du document :
Anglais
Titre :
From combinatorial games to shape-symmetric morphisms
Date de publication/diffusion :
novembre 2017
Nom de la manifestation :
Research school: Tiling Dynamical System
Organisateur de la manifestation :
Jean-Morlet chair: Shigeki Akiyama, Pierre Arnoux
Date de la manifestation :
from 20-11-2017 to 24-11-2017
Manifestation à portée :
International
Disponible sur ORBi :
depuis le 20 novembre 2017

Statistiques


Nombre de vues
189 (dont 6 ULiège)
Nombre de téléchargements
284 (dont 4 ULiège)

Bibliographie


Publications similaires



Contacter ORBi