Lebon, Georgy ; Université de Liège - ULiège > Relations académiques et scientifiques (Sciences)
Machrafi, Hatim ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Grmela, M.; Department of Chemical Engineering, Ecole Polytechnique de Montréal, Montréal, Canada
Language :
English
Title :
An extended irreversible thermodynamic modelling of size-dependent thermal conductivity of spherical nanoparticles dispersed in homogeneous media
Publication date :
2015
Journal title :
Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Sus, C., Eastman, J.A., (1995) Enhancing Thermal Conductivity of Fluids with Nanoparticles, , Argonne, IL: Argonne Press
De Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X., Thermal conductivity of group-IV semiconductors from a kinetic-collective model (2014) Proc. R. Soc. A, 470, p. 20140371
Kakak, S., Pramuanjaroenkij, A., Review of heat transfer enhancement with nanofluids (2009) Int. J. Heat Mass Transf., 52, pp. 3187-3189
Tesfai, W., Singh, P.K., Masharga, S., Souier, T., Chiesa, M., Shatilla, Y., Investigating the effects of suspensions nano-structure on the thermophysical properties of nanofluids (2012) J. Appl. Phys., 112, p. 114315
Sellitto, A., Cimmelli, V.A., Jou, D., Thermoelectric effects and size dependency of the figure of merit in cylindrical nanowires (2013) Int. J. Mass Heat Transf., 57, pp. 109-116
Venkatasubramanian, R., Siivola, E., Colpitts, T., O'Quinnet, B., Thin-film thermoelectric devices with high room-temperature figures of merit (2001) Nature, 413, pp. 597-602
Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Kanatzidis, M.G., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals (2014) Nature, 508, pp. 373-377
Khanafer, K., Vafai, K.A., A critical synthesis of thermophysical characteristics of nanaofluids (2011) Int. J. Heat Mass Transf., 54, pp. 4410-4428
Michaelidis, E.E., Transport properties of nanofluids. A critical review (2013) J. Non-Equilib. Thermodyn., 38, pp. 1-79
Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H., Effective thermal heat conductivity of particulate composites with interfacial thermal resistance (1997) J. Appl. Phys., 81, pp. 6692-6699
Lebon, G., Heat conduction at micro and nanoscales: A review through the prism of extended irreversible thermodynamics (2014) J. Non-Equilib. Thermodyn., 39, pp. 35-58
Cimmelli, V.A., Sellitto, A., Jou, D., A nonlinear thermodynamic model for a breakdown of the Onsager symmetry and the efficiency of thermoelectric conversion in nanowires (2014) Proc. R. Soc. A., 470, p. 20140265
Lebon, G., Machrafi, H., Grmela, M., Dubois, Ch., An extended thermodynamic model of transient heat conduction at sub-continuum scales (2009) Proc. R. Soc. A, 467, pp. 3241-3256
Jou, D., Casas-Vazquez, J., Lebon, G., (2010) Extended Irreversible Thermodynamics, 4th Edn, , New York, NY: Springer
Chen, G., Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices (1998) Phys. Rev. B, 57, pp. 14958-14973
Maxwell, J.C., (1881) Treatise on Electricity and Magnetism, 2nd Edn, , Oxford, UK: Clarendon
Bruggeman, D., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen (1935) Anal. Phys., 24, pp. 636-664
Minnich, A.J., Chen, G., Modified effective medium formulation for the thermal conductivity of nanocomposites (2007) Appl. Phys. Lett., 91, p. 073105
Chen, G., Phonon heat conduction in nanostructures (2000) Int. J. Therm. Sci., 39, pp. 471-480
Behrang, A., Grmela, M., Dubois, C., Turenne, S., Lafleur, P.G., Influence of particle-matrix interface, temperature and agglomeration of heat conduction in dispersions (2013) J. Appl. Phys., 114, p. 014305
Vazquez, F., Del Rio, J.A., Thermodynamic characterization of the diffusive transport to wave propagation transition in heat conducting thin films (2012) J. Appl. Phys., 112, p. 123707
Dames, C., Microscale conduction in heat conduction (2009) Heat Conduction, , (ed. LM Jiji). New York: Springer
Sellitto, A., Alvarez, F.X., Jou, D., Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires (2010) J. Appl. Phys., 107, p. 114312
Ordonez-Miranda, J., Yang, R., Alvarado-Gil, J.J., On the thermal conductivity of particulate composites (2011) Appl. Phys. Lett., 98, p. 233111
Dames, C., Chen, G., Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires (2004) J. Appl. Phys., 95, pp. 682-693
Wang, Z., Mingo, N., Diameter dependence of SiGe nanowire thermal conductivity (2010) Appl. Phys. Lett., 97, p. 101903
Kim, H., Kim, I., Choi, H., Kim, W., Thermal conductivities of Si1-xGex nanowires with different germanium concentrations and diameters (2010) Appl. Phys. Lett., 96, p. 233106
Jeng, M.S., Song, D., Chen, G., Yang, R., Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation (2008) J. Heat Transf., 130, p. 042410
Kochetov, R., Korobko, A.V., Andritsch, T., Phf, M., Picken, S.J., Smit, J.J., Modeling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filter and matrix (2011) J. Phys. D, 44, pp. 395-401
Callaway, J., Model for lattice thermal conductivity at low temperature (1959) Phys. Rev., 113, pp. 1046-1051
Mingo, N., Yang, L., Li, D., Majumdar, A., (2003) Predicting the Thermal Conductivity of Si and Ge Nanowires, 3, pp. 1713-1716. , Nano Lett
Chen, G., (2005) Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, , Oxford, UK: Oxford University Press
Glassbrenner, C.J., Slack, G.A., Thermal conductivity of silicon and germanium from 3K melting point (1964) Phys. Rev. A, 134, pp. 1058-1069
Alvarez, F.X., Alvarez-Quintana, J., Jou, D., Rodríguez Viejo, J., Analytical expression for thermal conductivity of superlattices (2010) J. Appl. Phys., 107, p. 084303
Onsager, L., Reciprocal relations in irreversible processes i (1931) Phys. Rev., 37, pp. 405-426
Onsager, L., Reciprocal relations in irreversible processes II (1931) Phys. Rev., 38, pp. 2265-2279
Prigogine, I., (1961) Introduction to Thermodynamics of Irreversible Processes, , New York, NY: Interscience
Jou, D., Casas-Vazquez, J., Criado-Sancho, M., (2011) Thermodynamics of Fluids under Flow, 2nd Edn, , New York, NY: Springer
Cattaneo, C., Sulla conduzione del calore (1948) Atti Semin. Mat. Fis. Univ. Modena, 3, pp. 83-101
Dreyer, W., Struchtrup, H., Heat pulse experiments revisited (1993) Contin. Mech. Thermodyn., 5, pp. 3-50
Hess, S., On nonlocal constitutive relations, continued fraction expansion for the wave vector dependent diffusion coefficient (1977) Z. Naturforsch., 32 A, pp. 678-684
Jou, D., Casas-Vazquez, J., Lebon, G., Grmela, M., A phenomenological scaling approach for heat transport in nano-systems (2005) Appl. Math. Lett.SEP, 18, pp. 963-967
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.