groundwater pollution; stable isotope analysis; N isotopes; N anthropogenic sources; N cycle processes; agriculture
Abstract :
[en] This work reviews applications of stable isotope analysis to the studies of transport and transformation of N species in groundwater under agricultural areas. It summarizes evidence regarding factors affecting the isotopic composition of NO3−, NH4+ and N2O in subsurface, and discusses the use of 11B, 18O, 13C, 34S, 87Sr/86Sr isotopes to support the analysis of δ15N values. The isotopic composition of NO3−, NH4+ and N2O varies depending on their sources and dynamics of N cycle processes. The reported δ15N-NO3− values for sources of NO3− are: soil organic N – +3‰–+8‰, mineral fertilizers – −8‰–+7‰; manure/household waste – +5‰ to +35‰. For NH4+ sources, the isotopic signature ranges are: organic matter – +2.4–+4.1‰, rainwater – −13.4–+2.3‰, mineral fertilizers –−7.4–+5.1‰, householdwaste –+5–+9‰; animalmanure–+8–+11‰. ForN2O, isotopic composition depends on isotopic signatures of substrate pools and reaction rates. δ15Nvalues of NO3− are influenced by fractionation effects occurring during denitrification (ɛ=5–40‰), nitrification (ɛ=5–35‰) and DNRA (ɛ not reported). The isotopic signature of NH4+ is also affected by nitrification and DNRA as well as mineralization (ɛ=1‰), sorption (ɛ=1–8‰), anammox (ɛ=4.3–7.4‰) and volatilization (ɛ=25‰). As for theN2O, production of N2O leads to its depletion in 15N, whereas consumption – to enrichment in 15N. The magnitude of fractionation effects occurring during the considered processes depends on temperature, pH, DO, C/NO3− ratio, size of the substrate pool, availability of electron donors, water content in subsoil, residence time, land use, hydrogeology. While previous studies have accumulated rich data on isotopic composition of NO3− in groundwater, evidence remains scarce in the cases of NH4+ and N2O. Further research is required to consider variability of δ15N-NH4+ and δ15N-N2O in groundwater across agricultural ecosystems.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anderson, T.R., Groffman, P.M., Kaushal, S.S., Walter, M.T., Shallow groundwater denitrification in riparian zones of a headwater agricultural landscape. J. Environ. Qual. 43:2 (2014), 732–744.
Aravena, R., Robertson, W.D., Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plume. Groundwater 36:6 (1998), 975–982.
Baily, A., Rock, L., Watson, C.J., Fenton, O., Spatial and temporal variations in groundwater nitrate at an intensive dairy farm in south-east Ireland: insights from stable isotope data. Agric. Ecosysts. Environ. 144 (2011), 308–318.
Barnes, R.T., Raymond, P.A., Land-use controls on sources and processing of nitrate in small watersheds: insights from dual isotopic analysis. Ecol. Appl. 20:7 (2010), 1961–1978.
Bateman, A.S., Kelly, S.D., Jickells, T.D., Nitrogen isotope relationships between crops and fertilizer: implications for using nitrogen isotope analysis as an indicator of agricultural regime. J. Agric. Food Chem. 53:14 (2005), 5760–5765.
Bedard-Haughn, A.A., van Groenigen, J.W., van Kessel, C., Tracing 15N through the landscapes: potential uses and precautions. J. Hydrol. 272 (2003), 175–190.
Bernhard, A., The nitrogen cycle: processes, players, and human impact. Nat. Educ. Knowl., 3(10), 2012, 25.
Bock, E., Schmidt, I., Stuven, R., Zart, D., Cell biology of nitrifying bacteria. Prosser, J.I., (eds.) Nitrification Special Publications of the Society of General Microbiology, Vol. 20, 1986, 17–38.
Böhlke, J.K., Groundwater recharge and agricultural contamination. Hydrogeol. J. 10:1 (2002), 153–179.
Böhlke, J.K., Horan, M., Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Appl. Geochem. 15:5 (2000), 599–609.
Böhlke, J.K., Smith, R.L., Miller, D.N., Ammonium transport and reaction in contaminated groundwater: application of isotope tracers and isotope fractionation studies. Water Resour. Res., 42(5), 2006.
Böttcher, J., Strebel, O., Voerkelius, S., Schmidt, H.L., Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 114:3–4 (1990), 413–424.
Brandes, J.A., Devol, A.H., A global marine-fixed nitrogen isotopic budget: implications for holocene nitrogen cycling. Glob. Biogeochem. Cycles, 16(4), 2002.
Burgin, A.J., Hamilton, S.K., Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5:2 (2007), 89–96.
Buss, S.R., Herbert, A.W., Morgan, P., Thornton, S.F., Smith, J.W.N., A review of ammonium attenuation in soil and groundwater. Q. J. Eng. Geol. Hydrogeol. 37:4 (2004), 347–359.
Casciotti, K.L., Sigman, D.M., Hastings, M.G., Böhlke, J.K., Hilkert, A., Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74:19 (2002), 4905–4912.
Casciotti, K.L., McIlvin, M., Buchwald, C., Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol. Oceanogr. 55:2 (2010), 753–762.
Choi, W.J., Lee, S.M., Ro, H.M., Evaluation of contamination sources of groundwater NO 3− using nitrogen isotope data: a review. Geosci. J. 7:1 (2003), 81–87.
Choi, W.J., Han, G.H., Lee, S.M., Lee, G.T., Yoon, K.S., Choi, S.M., Ro, H.M., Impact of land-use types on nitrate concentration and δ15N in unconfined groundwater in rural areas of Korea. Agric. Ecosyst. Environ. 120:2 (2007), 259–268.
Clark, I., Contaminant Geochemistry and Isotopes. In Groundwater Geochemistry and Isotopes. 2015, Taylor & Francis Group, LLC, Boca Raton, FL.
Clark, J.M., Chapman, P.J., Adamson, J.K., Lane, S.N., Influence of drought‐induced acidification on the mobility of dissolved organic carbon in peat soils. Glob. Chang. Biol. 11:5 (2005), 791–809.
Clough, T.J., Sherlock, R.R., Rolston, D.E., A review of the movement and fate of N2O in the subsoil. Nutr. Cycl. Agroecosyst. 72:1 (2005), 3–11.
Cole, M.L., Kroeger, K.D., McClelland, J.W., Valiela, I., Effects of watershed land use on nitrogen concentrations and δ15 nitrogen in groundwater. Biogeochemistry 77:2 (2006), 199–215.
Curtin, D., Campbell, C.A., Jalil, A., Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 30:1 (1998), 57–64.
Danielescu, S., MacQuarrie, K.T., Nitrogen and oxygen isotopes in nitrate in the groundwater and surface water discharge from two rural catchments: implications for nitrogen loading to coastal waters. Biogeochemistry 115:1–3 (2013), 111–127.
De Boer, W., Kowalchuk, G.A., Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol. Biochem. 33:7 (2001), 853–866.
Delwiche, C.C., Steyn, P.L., Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci. Technol. 4:11 (1970), 929–935.
Deurer, M., Von der Heide, C., Böttcher, J., Duijnisveld, W.H.M., Weymann, D., Well, R., The dynamics of N2O near the groundwater table and the transfer of N2O into the unsaturated zone: a case study from a sandy aquifer in Germany. Catena 72:3 (2008), 362–373.
Di, H.J., Cameron, K.C., Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr. Cycl. Agroecosyst. 64:3 (2002), 237–256.
Di Lorenzo, T., Brilli, M., Del Tosto, D., Galassi, D.M.P., Petitta, M., Nitrate source and fate at the catchment scale of the Vibrata River and aquifer (central Italy): an analysis by integrating component approaches and nitrogen isotopes. Environ. Earth Sci. 67 (2012), 2383–2398.
Directive, N., Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Official J. L, 375(31), 1991, 12.
Durka, W., Schulze, E.D., Gebauer, G., Voerkelius, S., Effects of forest decline on uptake and leaching of deposited nitrate determined from (15) N and (18) O measurements. Nature, 372(6508), 1994, 765.
Einsiedl, F., Mayer, B., Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, southern Germany. Environ. Sci. Technol. 40:21 (2006), 6697–6702.
Evans, C.D., Chapman, P.J., Clark, J.M., Monteith, D.T., Cresser, M.S., Alternative explanations for rising dissolved organic carbon export from organic soils. Glob. Chang. Biol. 12:11 (2006), 2044–2053.
Feast, N.A., Hiscock, K.M., Dennis, P.F., Andrews, J.N., Nitrogen isotope hydrochemistry and denitrification within the Chalk aquifer system of north Norfolk, UK. J. Hydrol. 211 (1998), 233–252.
Fewtrell, L., Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ. Health Perspect., 2004, 1371–1374.
Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Helkowski, J.H., Global consequences of land use. Science 309:5734 (2005), 570–574.
Fu, M.H., Xu, X.C., Tabatabai, M.A., Effect of pH on nitrogen mineralization in crop-residue-treated soils. Biol. Fertil. Soils 5:2 (1987), 115–119.
Fukada, T., Hiscock, K.M., Dennis, P.F., Grischek, T., A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res. 37:13 (2003), 3070–3078.
Gautam, S., Iqbal, M.Z., Using stable isotopes of nitrogen to study its source and transformation in a heavily farmed watershed. Environ. Earth Sci. 60 (2010), 11–20.
Goldberg, S.D., Knorr, K.H., Gebauer, G., N2O concentration and isotope signature along profiles provide deeper insight into the fate of N2O in soils. Isot. Environ. Health Stud. 44:4 (2008), 377–391.
Granger, J., Wankel, S.D., Isotopic overprinting of nitrification on denitrification as a ubiquitous and unifying feature of environmental nitrogen cycling. Proc. Natl. Acad. Sci. 113:42 (2016), E6391–E6400.
Guntiñas, M.E., Leirós, M.C., Trasar-Cepeda, C., Gil-Sotres, F., Effects of moisture and temperature on net soil nitrogen mineralization: a laboratory study. Eur. J. Soil Biol. 48 (2012), 73–80.
Hernández-del Amo, E., Menció A., Gich, F., Mas-Pla, J., Bañeras, L., Isotope and microbiome data provide complementary information to identify natural nitrate attenuation processes in groundwater. Sci. Total Environ. 613 (2018), 579–591.
Hinkle, S.R., Böhlke, J.K., Duff, J.H., Morgan, D.S., Weick, R.J., Aquifer-scale controls on the distribution of nitrate and ammonium in ground water near La Pine, Oregon, USA. J. Hydrol. 333 (2007), 486–503.
Hiscock, K.M., Bateman, A.S., Muhlherr, I.H., Fukada, T., Dennis, P.F., Indirect emissions of nitrous oxide from regional aquifers in the United Kingdom. Environ. Sci. Technol. 37:16 (2003), 3507–3512.
Hollocher, T.C., Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Arch. Biochem. Biophys. 233:2 (1984), 721–727.
Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I.-T., Shimada, J., The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Res. 47 (2013), 2661–2675.
Hosono, T., Tokunaga, T., Tsushima, A., Shimada, J., Combined use of δ 13 C, δ 15 N, and δ 34 S tracers to study anaerobic bacterial processes in groundwater flow systems. Water Res. 54 (2014), 284–296.
Hübner, H., Isotope effects of nitrogen in soils and the biosphere, 1981 (No. ZFI-MITT-41).
Jin, R.C., Yang, G.F., Yu, J.J., Zheng, P., The inhibition of the anammox process: a review. Chem. Eng. J. 197 (2012), 67–79.
Jurado, A., Borges, A.V., Brouyère, S., Dynamics and emissions of N2O in groundwater: a review. Sci. Total Environ. 584 (2017), 207–218.
Kellman, L.M., Hillaire-Marcel, C., Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agric. Ecosyst. Environ. 95:1 (2003), 87–102.
Kelso, B., et al. Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation. Appl. Environ. Microbiol. 63:12 (1997), 4679–4685.
Kendall, C., Tracing nitrogen sources and cycling in catchments. y McDonnell, Kendall, (eds.) Isotope Tracers in Catchment Hydrology, 1998, 521–576.
Kendall, C., Aravena, R., Nitrate isotopes in groundwater systems. Environmental Tracers in Subsurface Hydrology, 2000, Springer, US, 261–297.
Keuskamp, J.A., Van Drecht, G., Bouwman, A.F., European-scale modelling of groundwater denitrification and associated N2O production. Environ. Pollut. 165 (2012), 67–76.
Kloppmann, W., Chikurel, H., Picot, G., Guttman, J., Pettenati, M., Aharoni, A., Wintgens, T., B and Li isotopes as intrinsic tracers for injection tests in aquifer storage and recovery systems. Appl. Geochem. 24:7 (2009), 1214–1223.
Knöller, K., Trettin, R., Strauch, G., Sulphur cycling in the drinking water catchment area of Torgau–Mockritz (Germany): insights from hydrochemical and stable isotope investigations. Hydrol. Process. 19:17 (2005), 3445–3465.
Knöller, K., Vogt, C., Haupt, M., Feisthauer, S., Richnow, H.H., Experimental investigation of nitrogen and oxygen isotope fractionation in nitrate and nitrite during denitrification. Biogeochemistry 103:1–3 (2011), 371–384.
Knowles, R., Nitrogen cycle. Encyclopedia of Microbiology, 2000, Academic Press, San Diego.
Kool, D.M., Wrage, N., Oenema, O., Van Kessel, C., Van Groenigen, J.W., Oxygen exchange with water alters the oxygen isotopic signature of nitrate in soil ecosystems. Soil Biol. Biochem. 43:6 (2011), 1180–1185.
Korom, S.F., Natural denitrification in the saturated zone: a review. Water Resour. Res. 28:6 (1992), 1657–1668.
Krouse, H.R., Grinenko, V.A., Stable isotopes: natural and anthropogenic sulphur in the environment, 1991.
Kuenen, J.G., Anammox bacteria: from discovery to application. Nat. Rev. Microbiol. 6 (2008), 320–326.
Ledoux, E., Gomez, E., Monget, J.M., Viavattene, C., Viennot, P., Ducharne, A., Mary, B., Agriculture and groundwater nitrate contamination in the Seine basin. The STICS–MODCOU modelling chain. Sci. Total Environ. 375:1 (2007), 33–47.
Li, X.D., Masuda, H., Koba, K., Zeng, H.A., Nitrogen isotope study on nitrate-contaminated groundwater in the Sichuan Basin, China. Water Air Soil Pollut. 178 (2007), 145–156.
Li, S., Liu, C., Lang, Y., Zhao, Z., Zhou, Z., Tracing the sources of nitrate in karstic groundwater in Zunyi, Southwest China: a combined nitrogen isotope and water chemistry approach. Environ. Earth Sci. 60 (2010), 1415–1423.
Li, Y., Liu, Y., Wang, Y., Niu, L., Xu, X., Tian, Y., Interactive effects of soil temperature and moisture on soil N mineralization in a Stipa krylovii grassland in Inner Mongolia, China. J. Arid. Land 6:5 (2014), 571–580.
Li, X., Tang, C., Han, Z., Jingqiu, P., Yingjie, C., Chipeng, Z., Spatial and seasonal variation of dissolved nitrous oxide in wetland groundwater. Environ. Pollut., 3(1), 2014, 21.
Liu, C.Q., Li, S.L., Lang, Y.C., Xiao, H.Y., Using δ15N and δ18O values to identify nitrate sources in karst ground water, Guiyang, Southwest China. Environ. Sci. Technol. 40 (2006), 6928–6933.
Maeda, K., Toyoda, S., Yano, M., Hattori, S., Fukasawa, M., Nakajima, K., Yoshida, N., Isotopically enriched ammonium shows high nitrogen transformation in the pile top zone of dairy manure compost. Biogeosciences 13:4 (2016), 1341–1349.
Magalhaes, C., Moreira, R., Wiebe, W.J., Bordalo, A.A., Salinity and inorganic nitrogen effects on nitrification and denitrification rates in inter-tidal sediments and rocky biofilms: Douro River Estuary, Portugal. Proceedings of the 7th International Specialised IWA Conference on Diffuse Pollution and Basin Management, Dublin, 2003, 6–73.
Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., Tardieux, P., Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:3 (1981), 413–430.
Mariotti, A., Landreau, A., Simon, B., N isotope biogeochemistry and natural denitrification process in groundwater – application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta 52 (1988), 1869–1887.
Mayer, B., Bollwerk, S.M., Mansfeldt, T., Hütter, B., Veizer, J., The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim. Cosmochim. Acta 65:16 (2001), 2743–2756.
McAleer, E.B., Coxon, C.E., Richards, K.G., Jahangir, M.M.R., Grant, J., Mellander, P.E., Groundwater nitrate reduction versus dissolved gas production: a tale of two catchments. Science of The Total Environment 586 (2017), 372–389.
McMahon, P.B., Böhlke, J.K., Regional patterns in the isotopic composition of natural and anthropogenic nitrate in groundwater, High Plains, USA. Environ. Sci. Technol. 40:9 (2006), 2965–2970.
Mengis, M., Schif, S.L., Harris, M., English, M.C., Aravena, R., Elgood, R.J., MacLean, A., Multiple geochemical and isotopic approaches for assessing ground water NO3− elimination in a riparian zone. Groundwater 37:3 (1999), 448–457.
Michener, R., Lajtha, K., Tracing anthropogenic inputs of nitrogen to ecosystems. Kendall, C., Elliott, E.M., Wankel, S.D., (eds.) Stable Isotopes in Ecology and Environmental Science, 2nd ed., 2007, Blackwell Publishing Ltd., Carlton, Victoria, 375–449.
Minamikawa, K., Nishimura, S., Nakajima, Y., Osaka, K.I., Sawamoto, T., Yagi, K., Upward diffusion of nitrous oxide produced by denitrification near shallow groundwater table in the summer: a lysimeter experiment. Soil Sci. Plant Nutr. 57:5 (2011), 719–732.
Moncaster, S.J., Bottrell, S.H., Tellam, J.H., Lloyd, J.W., Konhauser, K.O., Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate. J. Contam. Hydrol. 43:2 (2000), 147–163.
Moore, K.B., Ekwurzel, B., Esser, B.K., Hudson, G.B., Moran, J.E., Sources of groundwater nitrate revealed using residence time and isotope methods. Appl. Geochem. 21:6 (2006), 1016–1029.
Nascimento, C., Atekwana, E.A., Krishnamurthy, R.V., Concentrations and isotope ratios of dissolved inorganic carbon in denitrifying environments. Geophys. Res. Lett. 24:12 (1997), 1511–1514.
Norrman, J., Sparrenbom, C.J., Berg, M., Dang, D.N., Jacks, G., Harms-Ringdahl, P., Rosqvist, H., Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ 15 N) values. Appl. Geochem. 61 (2015), 248–258.
Okito, A., Alves, B.R.J., Urquiaga, S., Boddey, R.M., Isotopic fractionation during N2 fixation by four tropical legumes. Soil Biol. Biochem. 36:7 (2004), 1179–1190.
Organisation of Economic Co-operation and Development, OECD Environmental Performance Reviews of Ireland, Conclusions and Recommendations. 2009, Organisation of Economic Co-operation and Development, Paris, 2–18.
Ostrom, N.E., Knoke, K.E., Hedin, L.O., Robertson, G.P., Smucker, A.J.M., Temporal trends in nitrogen isotopes values of nitrate leaching from an agricultural soil. Chem. Geol. 146 (1998), 219–227.
Otero, N., Torrentó C., Soler, A., Menció A., Mas-Pla, J., Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: the case of Plana de Vic (Osona, Spain). Agric. Ecosyst. Environ. 133:1 (2009), 103–113.
Petitta, M., Fracchiolla, D., Aravena, R., Barbieri, M., Application of isotopic and geochemical tools for the evaluation of nitrogen cycling in an agricultural basin, the Fucino Plain, Central Italy. J. Hydrol. 372:1 (2009), 124–135.
Postgate, J.R., The fundamentals of nitrogen fixation. CUP Archive, 1982.
Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W., Bemment, C.D., Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res. 42:16 (2008), 4215–4232.
Robertson, G.P., Vitousek, P.M., Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34 (2009), 97–125.
Robertson, W.D., Moore, T.A., Spoelstra, J., Li, L., Elgood, R.J., Clark, I.D., Neufeld, J.D., Natural attenuation of septic system nitrogen by anammox. Groundwater 50:4 (2012), 541–553.
Robinson, D., δ 15 N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16:3 (2001), 153–162.
Rütting, T., Boeckx, P., Müller, C., Klemedtsson, L., Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:7 (2011), 1779–1791.
Savard, M.M., Somers, G., Smirnoff, A., Paradis, D., van Bochove, E., Liao, S., Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination. J. Hydrol. 381:1 (2010), 134–141.
Schimel, J.P., Bennett, J., Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:3 (2004), 591–602.
Schmidt, H.L., Werner, R.A., Yoshida, N., Well, R., Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects. Rapid Commun. Mass Spectrom. 18:18 (2004), 2036–2040.
Sebilo, M., Billen, G., Mayer, B., Billiou, D., Grably, M., Garnier, J., Mariotti, A., Assessing nitrification and denitrification in the Seine River and estuary using chemical and isotopic techniques. Ecosystems 9:4 (2006), 564–577.
Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G., Mariotti, A., Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl. Acad. Sci. 110:45 (2013), 18185–18189.
Shammas, N.K., Interactions of temperature, pH, and biomass on the nitrification process. J. Water Pollut. Control Fed., 1986, 52–59.
Sharp, Z., Principles of Stable Isotope Geochemistry: Nitrogen. 2007, Pearson Prentice Hal, Upper Saddle River, NJ, 206–219.
Smith, R.L., Baumgartner, L.K., Miller, D.N., Repert, D.A., Böhlke, J.K., Assessment of nitrification potential in ground water using short term, single-well injection experiments. Microb. Ecol. 51:1 (2006), 22–35.
Smith, R.L., Bohlke, J.K., Song, B., Tobias, C.R., Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer. Environ. Sci. Technol. 49:20 (2015), 12169–12177.
Stenstrom, M.K., Poduska, R.A., The effect of dissolved oxygen concentration on nitrification. Water Res. 14:6 (1980), 643–649.
Strebel, O.W.H.M., Duynisveld, W.H.M., Böttcher, J., Nitrate pollution of groundwater in western Europe. Agric. Ecosyst. Environ. 26:3–4 (1989), 189–214.
Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., Grizzetti, B., The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge University Press, 2011.
Tesoriero, A.J., Liebscher, H., Cox, S.E., Mechanism and rate of denitrification in an agricultural watershed: electron and mass balance along groundwater flow paths. Water Resour. Res. 36:6 (2000), 1545–1559.
Tomaszewski, M., Cema, G., Ziembińska-Buczyńska, A., Influence of temperature and pH on the anammox process: a review and meta-analysis. Chemosphere 182 (2017), 203–214.
Toyoda, S., Yoshida, N., Koba, K., Isotopocule analysis of biologically produced nitrous oxide in various environments. Mass Spectrom. Rev. 36:2 (2017), 135–160.
Ueda, S., Ogura, N., Wada, E., Nitrogen stable isotope ratio of groundwater N2O. Geophys. Res. Lett. 18:8 (1991), 1449–1452.
Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, B., Giller, K., Chalk, P., Measuring plant-associated nitrogen fixation in agricultural systems. Australian Centre for International Agricultural Research (ACIAR), 2008.
Vidal-Gavilan, G., Folch, A., Otero, N., Solanas, A.M., Soler, A., Isotope characterization of an in situ biodenitrification pilot-test in a fractured aquifer. Appl. Geochem. 32 (2013), 153–163.
Viers, J.H., Liptzin, D., Rosenstock, T.S., Jensen, W.B., Hollander, A.D., McNally, A., Fryjoff-Hung, A., Nitrogen sources and loading to groundwater: technical report 2. Addressing nitrate in California's drinking water with a focus on Tulare Lake Basin and Salinas Valley groundwater. Report for the State Water Resources Control Board to the Legislature, 2012, Center for Watershed Sciences, Univ. of Calif., Davis.
Vilomet, J.D., Angeletti, B., Moustier, S., Ambrosi, J.P., Wiesner, M., Bottero, J.Y., Chatelet-Snidaro, L., Application of strontium isotopes for tracing landfill leachate plumes in groundwater. Environ. Sci. Technol. 35:23 (2001), 4675–4679.
Virginia, R.A., Delwiche, C.C., Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia 54:3 (1982), 317–325.
Vitòria, L., Grandia, F., Soler, A., Evolution of the chemical (NH 4) and isotopic (δ 15 N-NH4) composition of pig manure stored in an experimental deep pit. 2003 (No. IAEA-CN-104).
Vitòria, L., Grandia, F., Soler, A., Evolution of the chemical (NH4) and isotopic (δ15N-NH4) composition of pig manure stored in an experimental deep pit. International Atomic Energy Agency, (eds.) Isotope Hydrology and Integrated Water Resources Management. Conf. Symp. Papers, Vienna, 2004, 188–189.
Vitòria, L., Otero, N., Soler, A., Canals, À., Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environ. Sci. Technol. 38:12 (2004), 3254–3262.
Vitòria, L., Soler, A., Aravena, R., Canals, A., Multi-isotopic approach (15N, 13C, 34S, 18O and D) for tracing agriculture contamination in groundwater (Maresme, NE Spain). Lichtfouse, E., Schwarzbauer, J., Robert, D., (eds.) Environmental Chemistry, 2005, Springer-Verlag, Heidelberg, 43–56.
Vitòria, L., Soler, A., Canals, À., Otero, N., Environmental isotopes (N, S, C, O, D) to determine natural attenuation process in nitrate contaminated waters: example of Osona (NE Spain). Appl. Geochem. 23 (2008), 3597–3611.
Voerkelius, S., Isotopendiskriminierungen bei der Nitrifikation und Denitrifikation: Grundlagen und Anwendungen der Herkunfts-Zuordnung von Nitrat und Distickstoffmonoxid. PhD thesis, 1990, TU Munich, Munich, 119.
Wang, S., Zhu, G., Peng, Y., Jetten, M.S., Yin, C., Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. Environ. Sci. Technol. 46:16 (2012), 8834–8842.
Wassenaar, L.I., Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3−. Appl. Geochem. 10 (1995), 391–405.
Well, R., Flessa, H., Jaradat, F., Toyoda, S., Yoshida, N., Measurement of isotopomer signatures of N2O in groundwater. J. Geophys. Res., 110, 2005, G02006.
Well, R., Eschenbach, W., Flessa, H., von der Heide, C., Weymann, D., Are dual isotope and isotopomer ratios of N2O useful indicators for N2O turnover during denitrification in nitrate-contaminated aquifers?. Geochim. Cosmochim. Acta 90 (2012), 265–282.
Wells, N.S., Hakoun, V., Brouyère, S., Knöller, K., Multi-species measurements of nitrogen isotopic composition reveal the spatial constraints and biological drivers of ammonium attenuation across a highly contaminated groundwater system. Water Res. 98 (2016), 363–375.
Wexler, S.K., Hiscock, K.M., Dennis, P.F., Catchment-scale quantification of hyporheic denitrification using an isotopic and solute flux approach. Environ. Sci. Technol. 45 (2011), 3967–3973.
Weymann, D., Well, R., Flessa, H., von der Heide, C., Deurer, M., Meyer, K., Konrad, C., Walther, W., Groundwater N2O emission factors of nitrate-contaminated aquifers as derived from denitrification progress and N2O accumulation. Biogeosciences 5 (2008), 1215–1226.
Widory, D., Kloppmann, W., Chery, L., Bonnin, J., Rochdi, H., Guinamant, J.-L., Nitrate in groundwater: an isotopic multi-tracer approach. J. Contam. Hydrol. 72 (2004), 165–188.
Widory, D., Petelet-Giraud, E., Negrel, P., Ladouche, B., Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environ. Sci. Technol. 39:2 (2005), 539–548.
Williard, K.W., DeWalle, D.R., Edwards, P.J., Sharpe, W.E., 18 O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. J. Hydrol. 252:1 (2001), 174–188.
Witter, E., Lopez-Real, J., Nitrogen losses during the composting of sewage sludge, and the effectiveness of clay soil, zeolite, and compost in adsorbing the volatilized ammonia. Biol. Wastes 23:4 (1988), 279–294.
World Health Organization, Guidelines for drinking-water quality [electronic resource]: incorporating 1st and 2nd addenda. Recommendations, vol. 1, 2008, World Health Organization.
Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Boeckx, P., Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater. Water Res. 43:5 (2009), 1159–1170.
Wrage, N., Velthof, G.L., Van Beusichem, M.L., Oenema, O., Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33:12 (2001), 1723–1732.
Xue, Y., Song, J., Zhang, Y., Kong, F., Wen, M., Zhang, G., Nitrate pollution and preliminary source identification of surface water in a semi-arid river basin, using isotopic and hydrochemical approaches. Water, 8(8), 2016, 328.
Zhu, X., Burger, M., Doane, T.A., Horwath, W.R., Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. 110:16 (2013), 6328–6333.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.