Serial order WM; calculation abilities; ordinal processing
Abstract :
[en] Recent studies have demonstrated that both ordinal number processing and serial order working memory (WM) abilities predict calculation achievement. This raises the question of shared ordinal processes operating in both numerical and WM domains. We explored this question by assessing the interrelations between numerical ordinal, serial order WM, and arithmetic abilities in 102 7- to 9-year-old children. We replicated previous studies showing that ordinal numerical judgement and serial order WM predict arithmetic abilities. Furthermore, we showed that ordinal numerical judgement abilities predict arithmetic abilities after controlling for serial order WM abilities while the relationship between serial order WM and arithmetic abilities was mediated by numerical ordinal judgement performance. We discuss these results in the light of recent theoretical frameworks considering that numerical ordinal codes support the coding of order information in verbal WM.
Research Center/Unit :
PsyNCog - Psychologie et Neuroscience Cognitives - ULiège
Disciplines :
Theoretical & cognitive psychology
Author, co-author :
Attout, Lucie ; Université de Liège - ULiège > Département de Psychologie > Psychopathologie cognitive
Majerus, Steve ; Université de Liège - ULiège > Département de Psychologie > Psychopathologie cognitive
Language :
English
Title :
Serial order working memory and numerical ordinal processing share common processes and predict arithmetic abilities
Publication date :
2018
Journal title :
British Journal of Developmental Psychology
ISSN :
0261-510X
Publisher :
British Psychological Society, Leicester, United Kingdom
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Attout, L., & Majerus, S. (2014). Working memory deficits in developmental dyscalculia: The importance of serial order. Child Neuropsychology, 21(4), 432-450. https://doi.org/10.1080/09297049.2014
Attout, L., Noël, M. P., & Majerus, S. (2014). The relationship between working memory for serial order and numerical development: A longitudinal study. Developmental Psychology, 50(6), 1667-1679. https://doi.org/10.1037/a0036496
Attout, L., Salmon, E., & Majerus, S. (2015). Working memory for serial order is dysfunctional in adults with a history of developmental dyscalculia: Evidence from behavioral and neuroimaging data. Developmental Neuropsychology, 40(4), 230-247. https://doi.org/10.1080/87565641.2015.1036993
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (pp. 47-90). San Diego, CA: Academic Press
Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and cognitive load in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 570-585. https://doi.org/10.1037/0278-7393.33.3.570
Binamé, F & Poncelet, M. (2016). Order short-term memory capacity predicts nonword reading and spelling in first and second grade. Reading and Writing, 29(1), 1-20. https://doi.org/10.1007/s11145-015-9577-9
Botvinick, M., & Watanabe, T. (2007). From numerosity to ordinal rank: A gain-field model of serial order representation in cortical working memory. Journal of Neuroscience, 27(32), 8636-8642. https://doi.org/10.1523/JNEUROSCI.2110-07.2007
Colomé, À., & Noël, M. P. (2012). One first? Acquisition of the cardinal and ordinal uses of numbers in preschoolers. Journal of Experimental Child Psychology, 113(2), 233-247. https://doi.org/10.1016/j.jecp.2012.03.005
Cowan, N. (2001). Metatheory of storage capacity limits. Behavioral and Brain Sciences, 24(01), 154-176. https://doi.org/10.1017/S0140525X0161392X
De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48-55. https://doi.org/10.1016/j.tine.2013.06.001
De Smedt, B., Verschaffel, L., & Ghesquiére, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103(4), 469-479. https://doi.org/10.1016/j.jecp.2009.01.010
De Visscher, A., Szmalec, A., Van Der Linden, L., & Noël, M.-P. (2015). Serial-order learning impairment and hypersensitivity-to-interference in dyscalculia. Cognition, 144, 38-48. https://doi.org/10.1016/j.cognition.2015.07.007
De Vos, T. (1992). Tempo test rekenen [Speeded arithmetic test]. Nijmegen, The Netherlands: Berkhout.
Dunn, L. M., Theriault-Whalen, C., & Dunn, C. M. (1993). Echelle de vocabulaire en images Peabody: Adaptation française du Peabody Picture Vocabulary Test [French adaptation of the Peabody Picture Vocabulary Test]. Toronto, ON: Psycan.
Franklin, M. S., Jonides, J., & Smith, E. E. (2009). Processing of order information for numbers and months. Memory and Cognition, 37(5), 644-654. https://doi.org/10.3758/MC.37.5.644
Goffin, C., & Ansari, D. (2016). Beyond magnitude: Judging ordinality of symbolic number is unrelated to magnitude comparison and independently relates to individual differences in arithmetic. Cognition, 150, 68-76. https://doi.org/10.1016/j.cognition.2016.01.018
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29. https://doi.org/10.1016/j.jecp.2008.04.001
Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140(2), 339-373. https://doi.org/10.1037/a0034221
Jarrold, C. (2017). The mid-career award: Working out how working memory works: Evidence from typical and atypical development. The Quarterly Journal of Experimental Psychology, 70(9), 1747-1767. https://doi.org/10.1080/17470218.2016.1213869
Kaufmann, L., Vogel, S., Starke, M., Kremser, C., & Schocke, M. (2009). Numerical and nonnumerical ordinality processing in children with and without developmental dyscalculia: Evidence from fMRI. Cognitive Development, 24(4), 486-494. https://doi.org/10.1016/j.cogdev.2009.09.001
Knops, A., & Willmes, K. (2014). Numerical ordering and symbolic arithmetic share frontal and parietal circuits in the right hemisphere. NeuroImage, 84, 786-795. https://doi.org/10.1016/j.neuroimage.2013.09.037
Leclercq, A. L., & Majerus, S. (2010). Serial-order short-term memory predicts vocabulary development: Evidence from a longitudinal study. Developmental Psychology, 46(2), 417-427. https://doi.org/10.1037/a0018540
Lyons, I. M., & Beilock, S. L. (2009). Beyond quantity: Individual differences in working memory and the ordinal understanding of numerical symbols. Cognition, 113(2), 189-204. https://doi.org/10.1016/j.cognition.2011.07.009
Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256-261. https://doi.org/10.1016/j.cognition.2011.07.009
Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714-726. https://doi.org/10.1111/desc.12152
Majerus, S., & Boukebza, C. (2013). Short-term memory for serial order supports vocabulary development: New evidence from a novel word learning paradigm. Journal of Experimental Child Psychology, 116(4), 811-828. https://doi.org/10.1016/j.jecp.2013.07.014
Majerus, S., D’Argembeau, A., Martinez Perez, T., Belayachi, S., Van der Linden, M., Collette, F, Maquet, P. (2010). The commonality of neural networks for verbal and visual short-term memory. Journal of Cognitive Neuroscience, 22(11), 2570-2593. https://doi.org/10.1162/jocn.2009.21378
Majerus, S., Poncelet, M., Greffe, C., & Van der Linden, M. (2006). Relations between vocabulary development and verbal short-term memory: The relative importance of short-term memory for serial order and item information. Journal of Experimental Child Psychology, 93(2), 95-119. https://doi.org/10.1016/j.jecp.2005.07.005
Majerus, S., Poncelet, M., Van der Linden, M., Albouy, G., Salmon, E., Sterpenich, V, Maquet, P. (2006). The left intraparietal sulcus and verbal short-term memory: Focus of attention or serial order? NeuroImage, 32(2), 880-891. https://doi.org/10.1016/j.neuroimage.2006.03.048
Marshuetz, C., Reuter-Lorenz, P. A., Smith, E. E., Jonides, J., & Noll, D. C. (2006). Working memory for order and the parietal cortex: An event-related functional magnetic resonance imaging study. Neuroscience, 139(1), 311-316. https://doi.org/10.1016/j.neuroscience.2005.04.071
Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., & Chenevert, T. L. (2000). Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. Journal of Cognitive Neuroscience, 12(Suppl 2), 130-144. https://doi.org/10.1162/08989290051137459
Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490-502. https://doi.org/10.1016/j.jecp.2009.02.003
Oftinger, A.-L & Camos, V. (2015). Maintenance mechanisms in children’s verbal working memory. Journal of Educational and Developmental Psychology, 6(1), 16. https://doi.org/10.5539/jedp.v6n1p16
Portrat, S., Camos, V., & Barrouillet, P. (2009). Working memory in children: A time-constrained functioning similar to adults. Journal of Experimental Child Psychology, 102(3), 368-374. https://doi.org/10.1016/j.jecp.2008.05.005
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891. https://doi.org/10.3758/BRM.40.3.879
Raven, J., Court, J. H., & Raven, J. (1998). Progressive matrices couleur. Oxford, UK: Oxford Psychologists Press.
Ricker, T. J., & Cowan, N. (2014). Differences between presentation methods in working memory procedures: A matter of working memory consolidation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 417-428. https://doi.org/10.1037/a0034301
Rubinsten, O., & Sury, D. (2011). Processing ordinality and quantity: The case of developmental dyscalculia. PLoS ONE, 6(9), e24079. https://doi.org/10.1371/journal.pone.0024079
Simon, T. J., Takarae, Y., DeBoer, T., McDonald-McGinn, D., Zackai, E., & Ross, J. (2008). Overlapping numerical cognition impairments in children with chromosome 22q11. 2 deletion or Turner syndromes. Neuropsychologia, 46(1), 82-94. https://doi.org/10.1016/j.neuropsychologia.2007.08.016
Sury, D., & Rubinsten, O. (2012). Ordinal processing of numerical and non-numerical information. In Z. Breznitz, O. Rubinsten, V. J. Molfese & D. L. Molfese (Eds.), Reading, writing, mathematics and the developing brain: Listening to many voices, Vol. 6 (pp. 209-232). Dordrecht, the Netherlands, New York, NY: Springer.
Szűcs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2014). Cognitive components of a mathematical processing network in 9-year-old children. Developmental Science, 17(4), 506-524. https://doi.org/10.1111/desc.12144
Tabachnick, B. G., & Fidell, L. S. (1996). Using multivariate statistics (3rd ed.). New York, NY: HarperCollins.
Tschentscher, N., & Hauk, O. (2014). How are things adding up? Neural differences between arithmetic operations are due to general problem solving strategies. NeuroImage, 92, 369-380. https://doi.org/10.1016/j.neuroimage.2014.01.061
Turconi, E., Campbell, J. I. D., & Seron, X. (2006). Numerical order and quantity processing in number comparison. Cognition, 98(3), 273-285. https://doi.org/10.1016/j.cognition.2004.12.002
van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114-119. https://doi.org/10.1016/j.cognition.2010.12.013
Vogel, S. E., Remark, A., & Ansari, D. (2015). Differential processing of symbolic numerical magnitude and order in first-grade children. Journal of Experimental Child Psychology, 129, 26-39. https://doi.org/10.1016/j.jecp.2014.07.010
Wiese, H. (2007). The co-evolution of number concepts and counting words. Lingua, 117(5), 758-772. https://doi.org/10.1016/j.lingua.2006.03.001
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.