Amsallem, D.: Interpolation on manifolds of CFD-based fluid and finite element-based structural reduced-order models for on-line aeroelastic predictions. Ph.D. dissertation, Stanford, USA (2010)
Astrid, P., et al.: Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans. Autom. Control, 53(10), 2237-2251 (2008)
Barrault, M., et al.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339(9), 667-672 (2004)
Bossavit, A.: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. Academic Press, San Diego (1998)
Bui-Thanh, T., Damodaran, M., Willcox, K.E.: Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J. 42, 1505-1516 (2004)
Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737-2764 (2010)
Clenet, S., et al.: Model order reduction of non-linear magnetostatic problems based on POD and DEI methods. IEEE Trans. Magn. 50, 33-36 (2014)
Cohen, A., DeVore, R.: Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. (2015)
Dular, P., et al.: A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans. Magn. 34(5), 3395-3398 (1998)
Gyselinck, J.: Twee-Dimensionale Dynamische Eindige-Elementenmodellering van Statische en Roterende Elektromagnetische Energieomzetters. PhD thesis (1999)
Gyselinck, J., et al.: Calculation of eddy currents and associated losses in electrical steel laminations. IEEE Trans. Magn. 35(3), 1191-1194 (1999)
Hiptmair, R., Xu, J.-C.: Nodal auxiliary space preconditioning for edge elements. In: 10th International Symposium on Electric and Magnetic Fields, France (2015)
Kolmogoroff, A.: Über die beste Annäaherung von Funktionen einer gegebenen Funktionenklasse. Ann. Math. Second Ser. 37, 107-110 (1936)
Maday, Y., Patera, A., Turinici, G.: A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17, 437-446 (2002)
Montier, L., et al: Robust model order reduction of a nonlinear electrical machine at start-up through reduction error estimation. In: 10th International Symposium on Electric andMagnetic Fields, France (2015)
Paquay, Y., Brüls, O., Geuzaine, C.: Nonlinear interpolation on manifold of reduced order models in magnetodynamic problems. IEEE Trans. Magn. 52(3), 1-4 (2016)
Ryckelynck, D.: A priori hyperreduction method: an adaptive approach. J. Comput. Phys. 202(1), 346-366 (2005)
Schilders, W., et al.: Model Order Reduction: Theory, Research Aspects and Applications, vol. 13. Springer, Berlin (2008)
Sirovich, L.: Turbulence and the dynamics of coherent structures. Part I: Coherent structures. Q. Appl. Math. 45(3), 561-571 (1987)
Sorensen, D. Private discussions (2015)
Volkwein, S.: Proper orthogonal decomposition and singular value decomposition. Universität Graz/Technische Universität Graz. SFB F003-Optimierung und Kontrolle (1999)
Zlatko, D., Gugercin, S.: A New Selection Operator for the Discrete Empirical Interpolation Method-improved a priori error bound and extensions. SIAM J. Sci. Comput. 38(5), A631-A648 (2016)