[en] This article characterizes the cardiac autonomous electrical activity induced by the mechanical deformations in the cardiac tissue through the mechano-electric feedback. A simplified and qualitative model is used to describe the system and we also account for temperature effects. The analysis emphasizes a very rich dynamics for the system, with periodic solutions, alternans, chaotic behaviors, etc. The possibility of self-sustained oscillations is analyzed in detail, particularly in terms of the values of important parameters such as the dimension of the system and the importance of the stretch-activated currents. It is also shown that high temperatures notably increase the parameter ranges for which self-sustained oscillations are observed and that several attractors can appear, depending on the location of the initial excitation of the system. Finally, the instability mechanisms by which the periodic solutions are destabilized have been studied by a Floquet analysis, which has revealed period-doubling phenomena and transient intermittencies.
Dauby, Pierre ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
Temperature, geometry, and bifurcations in the numerical modeling of the cardiac mechano-electric feedback.
Publication date :
2017
Journal title :
Chaos
ISSN :
1054-1500
eISSN :
1089-7682
Publisher :
American Institute of Physics, Melville, United States - New York
Watanabe, S. Sugiura, H. Kafuku, and T. Hisada Biophys. J. 87, 2074 (2004)
Trayanova and J. Rice Front. Physiol. 2, 43 (2011)
See the focus issue on fibrillation in ventricular myocardium, Chaos 8(1) (1998)
Clayton, O. Bernus, E. Cherry, H. Dierckx, F. Fenton, L. Mirabella, A. Panfilov, F. Sachse, G. Seemann, and H. Zhang Prog. Biophys. Mol. Biol. 104, 22 (2011)
Sachse Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics (Springer, 2004), Vol. 2966
Alonso, M. Bar, and B. Echebarria Rep. Prog. Phys. 79, 096601 (2016)
Alvarez-Lacalle and B. Echebarria Phys. Rev. E 79, 031921 (2009)
Manohar, B. Raman Dahal, and B. Gitler J. Invest. Med. High Impact Case Rep. 3 (2015)
Filippi, A. Gizzi, C. Cherubini, S. Luther, and F. Fenton Europace 16, 424 (2014)
Fenton, A. Gizzi, C. Cherubini, N. Pomella, and S. Filippi Phys. Rev. E 87, 042717 (2013)
Guharay and F. Sachse J. Physiol. 352, 685 (1984)
Hu and F. Sachse J. Mol. Cell. Cardiol. 29, 1511 (1997)
R. Franz, R. Cima, D. Wang, D. Profitt, and R. Kurz Circulation 86, 968 (1992)
Sachse, "Modeling mechanical-electrical transduction in the heart," in Cell Mechanics and Cellular Engineering (Springer, 1994), pp. 308-328
Kohl, K. Day, and D. Noble Can. J. Cardiol. 14, 111 (1998)
Kohl, P. Hunter, and D. Noble Prog. Biophys. Mol. Biol. 71, 91 (1999)
Kohl and F. Sachse Philos. Trans. R. Soc. London, Ser. A 359, 1173 (2001)
Nesbitt, P. Cooper, and P. Kohl The Lancet 357, 1195 (2001)
Cherubini, S. Filippi, P. Nardinocchi, and L. Teresi Prog. Biophys. Mol. Biol. 97, 562 (2008)
Keldermann, M. Nash, and A. Panfilov J. Stat. Phys. 128, 375 (2007)
Panfilov, R. Keldermann, and M. Nash Phys. Rev. Lett. 95, 258104 (2005)
Panfilov, R. Keldermann, and M. Nash Proc. Natl. Acad. Sci. U. S. A. 104, 7922 (2007)
Keener and J. Sneyd Mathematical Physiology (Springer, 2009)
Sundnes, G. Lines, X. Cai, B. Nielsen, K.-A. Mardal, and A. Tveito Computing the Electrical Activity in the Heart (Springer, 2006)
Nash and A. Panfilov Prog. Biophys. Mol. Biol. 85, 501 (2004)
Gizzi, C. Cherubini, S. Filippi, and A. Pandolfi Commun. Comput. Phys. 17, 93 (2015)
Quarteroni, T. Lassila, S. Rossi, and R. Ruiz-Baier Comput. Methods Appl. Mech. Eng. 314, 345 (2017)
Ruiz-Baier, A. Gizzi, S. Rossi, C. Cherubini, A. Laadhari, S. Filippi, and A. Quarteroni Math. Med. Biol. 31, 259 (2014)
Rossi, R. Ruiz-Baier, L. F. Pavarino, and A. Quarteroni Int. J. Numer. Methods Biomed. Eng. 28, 761 (2012)
Mooney J. Appl. Phys. 11, 582 (1940)
Rivlin Philos. Trans. R. Soc. London, Ser. A 241, 379 (1948)
Malvern Introduction to the Mechanics of a Continuous Medium (Prentice-Hall International, Englewood Cliffs, NJ, 1969)
Goktepe and E. Kuhl Comput. Mech. 45, 227 (2010)
FitzHugh J. Gen. Physiol. 49, 989 (1966)
Bini, C. Cherubini, and S. Filippi Phys. Rev. E 74, 041905 (2006)
Actually, this coefficient can be linked to the Arrhenius activation energy which allows a more accurate description of temperature effects on kinetics rates
Hille Ion Channels of Excitable Membranes (Sinauer Associates, Inc., 2001)
Collet, "Numerical modeling of the cardiac mechano-electric feedback within a thermo-electro-mechanical framework," Ph.D. thesis (Université de Liège, Belgium, 2015)
Trayanova Circ. Res. 108, 113 (2011)
Press, S. Teukolsky, W. Vetterling, and B. Flannery Numerical Recipes in FORTRAN; the Art of Scientific Computing (Cambridge University Press, New York, 1993)
Cash and A. Karp ACM Trans. Math. Software 16, 201 (1990)
Gizzi, E. Cherry, R. J. Gilmour, S. Luther, S. Filippi, and F. Fenton Front. Physiol. 4, 71 (2013)
Friedman Principles and Techniques of Applied Mathematics (Wiley, New York, 1956)
Bragard and P. Mossay, Chaos Solitons Fractals 83, 140 (2016)
Krogh-Madsen and D. Christini Ann. Rev. Biomed. Eng. 14, 179 (2012)
Teschl Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics, Vol. 140 (American Mathematical Society, Providence, 2012)
Kittel Introduction to Solid State Physics (Wiley, New York, 1996)
Argyris, G. Faust, M. Haase, and F. R An Exploration of Dynamical Systems and Chaos: Completely Revised and Enlarged, 2nd ed. (Springer, 2015)
Arnoldi Q. Appl. Math. 9, 17 (1951)
Boccia, U. Parlitz, and S. Luther Commun. Nonlinear Sci. Numer. Simul. 48, 115 (2017)
Otte, S. Berg, S. Luther, and U. Parlitz Commun. Nonlinear Sci. Numer. Simul. 37, 265 (2016)
Yanyan, R. Gray, and F. Fenton PloS One 10, e0135699 (2015)
Winslow, R. Hinch, and J. Greenstein Lect. Notes Math. 1867, 97 (2005)
Groenendaal, F. Ortega, A. Kherlopian, A. Zygmunt, T. Krogh-Madsen, and D. Christini PloS Comput. Biol. 11, e1004242 (2015)