Abstract :
[en] For years, Internet topology research has been conducted through active measurement. For instance, CAIDA builds router level topologies on top of IP level traces obtained with traceroute. The resulting graphs contain a significant amount of nodes with a very large degree, often exceeding the actual number of interfaces of a router. Although this property may result from inaccurate alias resolution, we believe that opaque MPLS clouds made of invisible tunnels are the main cause. Using Layer-2 technologies such as MPLS, routers can be configured to hide internal IP hops from traceroute. Consequently, an entry point of an MPLS network appears as the neighbor of all exit points and the whole Layer-3 network turns into a dense mesh of high degree nodes.
This paper tackles three problems: the revelation of IP hops hidden by MPLS tunnels, the MPLS deployment underestimation, and the overestimation of high degree nodes. We develop new measurement techniques able to reveal the presence and content of invisible MPLS tunnels. We assess them through emulation and cross-validation and perform a large-scale measurement campaign
targeting suspicious networks on which we apply statistical analysis. Finally, based on our dataset, we look at basic graph properties impacted by invisible tunnels.
Scopus citations®
without self-citations
6