[en] Abstract: Quercus rubra has been introduced in Europe since the end of the 17th century. It is widely distributed today across this continent and considered invasive in some countries. Here, we investigated the distribution of genetic diversity of both native and introduced populations with the aim of tracing the origin of introduced populations. A large sampling of 883 individuals
from 73 native and 38 European locations were genotyped at 69 SNPs. In the natural range, we found a continuous geographic gradient of variation with a predominant latitudinal component. We explored the existence of ancestral populations by performing Bayesian clustering analysis and found support for two or three ancestral genetic clusters. Approximate Bayesian Computations analyses based on these two or three clusters support recent extensive secondary contacts between them, suggesting that present-day continuous genetic variation resulted from recent admixture. In the introduced range, one main genetic cluster was not recovered in Europe, suggesting that source populations were preferentially located in the northern part of the natural distribution. However, our results cannot refute the introduction of populations from the southern states that did not survive in Europe.
Disciplines :
Genetics & genetic processes
Author, co-author :
Merceron, Nastasia
Leroy, Thibault
Chancerel, Emilie
Romero-Severson, Jeanne
Borkowski, Daniel S.
Ducousso, Alexis
Monty, Arnaud ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Porté, Annabel J.
Kremer, Antoine
Language :
English
Title :
Back to America: tracking the origin of European introduced populations of Quercus rubra L.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Allendorf, F.W., and Lundquist, L.L. 2003. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 17(1): 24-30. doi:10.1046/j.1523-1739.2003.02365.x.
Balco, G., and Rovey, C.W. 2010. Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geology, 38(9): 795-798. doi:10.1130/G30946.1.
Bauer, F. 1953. Die Roteiche. Edited by Sauerländer's Verlag. Frankfurt Am Main.
Bauer, F. 1954. Zur Rassenfrage der Roteiche. Allg. Forstzeitschrift, 9: 470-474.
Beaumont, M.A., Zhang, W., and Balding, D.J. 2002. Approximate Bayesian computation in population genetics. Genetics, 162(4): 2025-2035. Available from http://www.genetics.org/content/162/4/2025.abstract.12524368.
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., and Bonhomme, F. 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France.
Bigsby, K.M., Tobin, P.C., and Sills, E.O. 2011. Anthropogenic drivers of gypsy moth spread. Biol. Invasions, 13(9): 2077-2090. doi:10.1007/s10530-011-0027-6.
Birchenko, I., Feng, Y., and Romero-Severson, J. 2009. Biogeographical distribution of chloroplast diversity in northern red oak (Quercus rubra L.). Am. Midl. Nat. 161(1): 134-145. doi:10.1674/0003-0031-161.1.134.
Blackburn, T.M., Lockwood, J.L., and Cassey, P. 2015. The influence of numbers on invasion success. Mol. Ecol. 24(9): 1942-1953. doi:10.1111/mec.13075. PMID: 25641210.
Borkowski, D.S., Hoban, S.M., Chatwin, W.B., and Romero-Severson, J. 2017. Rangewide population differentiation and population substructure in Quercus rubra L. Tree Genet. Genomes, 13: 67. doi:10.1007/s11295-017-1148-6.
Bossdorf, O., Auge, H., Lafuma, L., Rogers, W.E., Siemann, E., and Prati, D. 2005. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 144(1): 1-11. doi:10.1007/s00442-005-0070-z. PMID: 15891837.
Buswell, J.M., Moles, A.T., and Hartley, S. 2011. Is rapid evolution common in introduced plant species? J. Ecol. 99(1): 214-224. doi:10.1111/j.1365-2745.2010.01759.x.
Castric, V., Bechsgaard, J., Schierup, M.H., and Vekemans, X. 2008. Repeated adaptive introgression at a gene under multiallelic balancing selection. PLoS Genet. 4(8): e1000168. doi:10.1371/journal.pgen.1000168. PMID:18769722.
Charlesworth, B. 2009. Fundamental concepts in genetics: Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10(3): 195-205. doi:10.1038/nrg2526. PMID:19204717.
Charlesworth, B., Nordborg, M., and Charlesworth, D. 1997. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res. 70(2): 155-174. doi:10.1017/S0016672397002954. PMID:9449192.
Chen, C., Durand, E., Forbes, F., and François, O. 2007. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol. Ecol. 7: 747-756. doi:10.1111/j.1471-8286.2007.01769.x.
Clout, M.N., and Russell, J.C. 2008. The invasion ecology of mammals: a global perspective. Wildl. Res. 35(3): 180-184. doi:10.1071/WR07091.
Colautti, R.I., and Barrett, S.C.H. 2013. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science, 342(6156): 364-366. doi:10.1126/science.1242121. PMID:24136968.
Cristescu, M.E. 2015. Genetic reconstructions of invasion history. Mol. Ecol. 24(9): 2212-2225. doi:10.1111/mec.13117. PMID:25703061.
Cruickshank, T.E., and Hahn, M.W. 2014. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23(13): 3133-3157. doi:10.1111/mec.12796. PMID:24845075.
Csilléry, K., Blum, M.G.B., Gaggiotti, O.E., and François, O. 2010. Approximate Bayesian Computation (ABC) in practice. Trends Ecol. Evol. 25(7): 410-418. doi:10.1016/j.tree.2010.04.001. PMID:20488578.
Csilléry, K., François, O., and Blum, M.G.B. 2012. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3(3): 475-479. doi:10.1111/j.2041-210X.2011.00179.x.
Daubree, J., and Kremer, A. 1993. Genetic and phenological differentiation between introduced and natural populations of Quercus rubra L. Ann. Sci. For. 50(S1): 271s-280s. doi:10.1051/forest:19930727.
Deneke, F.J. 1974. A red oak provenance trial in Kansas. Trans. Kansas Acad. Sci. 77(3): 195. doi:10.2307/3627319.
Desprez-Loustau, M.-L., Robin, C., Buée, M., Courtecuisse, R., Garbaye, J., Suffert, F., et al. 2007. The fungal dimension of biological invasions. Trends Ecol. Evol. 22(9): 472-480. doi:10.1016/j.tree.2007.04.005. PMID:17509727.
Dlugosch, K.M., and Parker, I.M. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17(1): 431-449. doi:10.1111/j.1365-294X.2007.03538.x. PMID:17908213.
Durand, E., Jay, F., Gaggiotti, O.E., and Francois, O. 2009. Spatial inference of admixture proportions and secondary contact zones. Mol. Biol. Evol. 26(9): 1963-1973. doi:10.1093/molbev/msp106. PMID:19461114.
Durka, W., Bossdorf, O., Prati, D., and Auge, H. 2005. Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol. Ecol. 14(6): 1697-1706. doi:10.1111/j.1365-294X.2005.02521.x. PMID:15836643.
Estoup, A., and Guillemaud, T. 2010. Reconstructing routes of invasion using genetic data: Why, how and so what? Mol. Ecol. 19(19): 4113-4130. doi:10.1111/j.1365-294X.2010.04773.x. PMID:20723048.
Excoffier, L., Smouse, P.E., and Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479-491. Available from http://link.springer.com/10.1007/s00424-009-0730-7. PMID:1644282.
Facon, B., Genton, B.J., Shykoff, J., Jarne, P., Estoup, A., and David, P. 2006. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21(3): 130-135. doi:10.1016/j.tree.2005.10.012. PMID:16701488.
François, O., Ancelet, S., and Guillot, G. 2006. Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics, 174(2): 805-816. doi:10.1534/genetics.106.059923. PMID:16888334.
Genton, B.J., Shykoff, J.A., and Giraud, T. 2005. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol. Ecol. 14(14): 4275-4285. doi:10.1111/j.1365-294X.2005.02750.x. PMID:16313592.
Gladieux, P., Zhang, X.G., Róldan-Ruiz, I., Caffier, V., Leroy, T., Devaux, M., et al. 2010. Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol. Ecol. 19(4): 658-674. doi:10.1111/j.1365-294X.2009.04498.x. PMID:20088887.
Goeze. 1916. Liste der seit dem 16. Jahrhundert bis auf die Gegenwart in die Gärten uns Parks Europas eingführten Bäume und Stäucher. Mitteilungen der Deutschen Dendrologischen Gesellschaft.
Göhre, K., and Wagenknecht, E. 1955. Die Roteiche und ihr Holz. Edited by Deutscher Bauernverlag. Berlin.
Hamilton, J.A., Okada, M., Korves, T., and Schmitt, J. 2015. The role of climate adaptation in colonization success in Arabidopsis thaliana. Mol. Ecol. 24(9): 2253-2263. doi:10.1111/mec.13099. PMID:25648134.
Hoban, S.M., Borkowski, D.S., Brosi, S.L., McCleary, T.S., Thompson, L.M., McLachlan, J.S., et al. 2010. Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: a product of range shifts, not ecological marginality or recent population decline. Mol. Ecol. 19(22): 4876-4891. doi: 10.1111/j.1365-294X.2010.04834.x. PMID:21040046.
Hudson, R.R. 2002. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18(2): 337-338. doi:10.1093/bioinformatics/18.2.337. PMID:11847089.
Hulme, P.E. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46(1): 10-18. doi:10.1111/j.1365-2664.2008.01600.x.
Jombart, T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11): 1403-1405. doi:10.1093/bioinformatics/btn129.PMID:18397895.
Jombart, T., and Ahmed, I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21): 3070-3071. doi:10.1093/bioinformatics/btr521. PMID:21926124.
Jones, R.A.C. 2009. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141(2): 113-130. doi:10.1016/j.virusres.2008.07.028. PMID:19159652.
Keller, S.R., and Taylor, D.R. 2010. Genomic admixture increases fitness during a biological invasion. J. Evol. Biol. 23(8): 1720-1731. doi:10.1111/j.1420-9101.2010.02037.x. PMID:20626546.
Konar, A., Choudhury, O., Bullis, R., Fiedler, F., Kruser, J.M., Stephens, M.T., et al. 2017. High-quality genetic mapping with ddRADseq in the non-model tree Quercus rubra. BMC Genomics, 18: 417. doi:10.1186/s12864-017-3765-8.
Kremer, A., Kleinschmit, J., Cottrell, J., Cundall, E.P., Deans, J.D., Ducousso, A., et al. 2002. Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks? For. Ecol. Manage. 156(1-3): 75-87. doi:10.1016/S0378-1127(01)00635-1.
Kriebel, H. 1993. Intraspecific variation of growth and adaptive traits in North American oak species. Ann. Sci. For. 50: 153s-165s. doi:10.1051/forest:19930715.
Kriebel, H.B., Bagley, W.T., Deneke, F.J., Funsch, R.W., Roth, P., Jokela, J.J., et al. 1976. Geographic variation in Quercus rubra in north central United States plantations. Silvae Genet. 25(3-4): 118-122.
Kriebel, H.B., Merritt, C., and Stadt, T. 1988. Genetics of growth rate in Quercus rubra: provenance and family effects by the early third decade in the north central U.S.A. Silvae Genet. 37: 193-198.
Lanier, L., Keller, R., and Kremer, A. 1980. Le Chêne rouge (Quercus rubra L.) en France. Rev. For. Française, 32(5): 419. doi:10.4267/2042/21428.
Laricchia, K.M., McCleary, T.S., Hoban, S.M., Borkowski, D., and Romero-Severson, J. 2015. Chloroplast haplotypes suggest preglacial differentiation and separate postglacial migration paths for the threatened North American forest tree Juglans cinerea L. Tree Genet. Genomes, 11(2): 30. doi:10.1007/s11295-015-0852-3.
Lavergne, S., and Molofsky, J. 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. U.S.A. 104(10): 3883-3888. doi:10.1073/pnas.0607324104. PMID:17360447.
Lehe, R., Hallatschek, O., and Peliti, L. 2012. The rate of beneficial mutations surfing on the wave of a range expansion. PLoS Comput. Biol. 8(3): e1002447. doi:10.1371/journal.pcbi.1002447. PMID:22479175.
Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T., and Brosse, S. 2008. Fish invasions in the world's river systems: when natural processes are blurred by human activities. PLoS Biol. 6(2): e28. doi:10.1371/journal.pbio.0060028. PMID:18254661.
Leroy, T., Le Cam, B., and Lemaire, C. 2014. When virulence originates from non-agricultural hosts: new insights into plant breeding. Infect. Genet. Evol. 27: 521-529. doi:10.1016/j.meegid.2013.12.022. PMID:24412509.
Leroy, T., Roux, C., Villate, L., Bodénès, C., Romiguier, J., Paiva, J.A.P., et al. 2017. Extensive recent secondary contacts between four European white oak species. New Phytol. 214(2): 865-878. doi:10.1111/nph.14413. PMID:28085203.
Magni, C.R., Ducousso, A., Caron, H., Petit, R.J., and Kremer, A. 2005. Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol. Ecol. 14(2): 513-524. doi:10.1111/j.1365-294X.2005.02400.x. PMID:15660942.
Magni Diaz, C.R. 2004. Reconstitution de l'introduction de Quercus rubra L. en Europe et conséquences génétiques dans les populations allochtones. Thèse de doctorat, Ecole Nationale du Génie Rural des Eaux et Forêts, Paris, France.
Major, K.C., Nosko, P., Kuehne, C., Campbell, D., and Bauhus, J. 2013. Regeneration dynamics of non-native northern red oak (Quercus rubra L.) populations as influenced by environmental factors: a case study in managed hardwood forests of southwestern Germany. For. Ecol. Manage. 291: 144-153. doi:10.1016/j.foreco.2012.12.006.
Mariette, S., Cottrell, J., Csaikl, U.M., Goikoechea, P., König, A., Lowe, A.J., et al. 2002. Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genet. 51(2-3): 72-79.
Maron, J.L., Vilà, M., Bommarco, R., Elmendorf, S., and Beardsley, P. 2004. Rapid evolution of an invasive plant. Ecol. Monogr. 74(2): 261-280. doi:10.1890/03-4027.
Miller, J.R. 2010. Survival of mutations arising during invasions. Evol. Appl. 3(2): 109-121. doi:10.1111/j.1752-4571.2010.00120.x. PMID:25567912.
Miura, O. 2007. Molecular genetic approaches to elucidate the ecological and evolutionary issues associated with biological invasions. Ecol. Res. 22(6): 876-883. doi:10.1007/s11284-007-0389-5.
Palmer, E.J. 1942. The Red Oak complex in the United States. Am. Midl. Nat. 27(3): 732-740. doi:10.2307/2420922.
Peakall, R., and Smouse, P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19): 2537-2539. doi:10.1093/bioinformatics/bts460. PMID:22820204.
Pejchar, L., and Mooney, H.A. 2009. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24(9): 497-504. doi:10.1016/j.tree.2009.03.016. PMID:19577817.
Petit, R.J., Brewer, S., Bordács, S., Burg, K., Cheddadi, R., Coart, E., et al. 2002a. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manage. 156(1-3): 49-74. doi:10.1016/S0378-1127(01)00634-X.
Petit, R.J., Csaikl, U.M., Bordács, S., Burg, K., Coart, E., Cottrell, J., et al. 2002b. Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. For. Ecol. Manage. 156: 5-26. doi:10.1016/S0378-1127(01)00645-4.
Petit, R.J., Latouche-Hallé, C., Pemonge, M.-H., and Kremer, A. 2002c. Chloroplast DNA variation of oaks in France and the influence of forest fragmentation on genetic diversity. For. Ecol. Manage. 156(1-3): 115-129. doi:10.1016/S0378-1127(01)00638-7.
Pyšek, P., and Jarošík, V. 2005. Residence time determines the distribution of alien plants. In Invasive plants: ecological and agricultural aspects. Birkhäuser-Verlag, Basel. pp. 77-96. doi:10.1007/3-7643-7380-6-5.
Pyšek, P., and Richardson, D.M. 2010. Invasive species, environmental change, and health. Annu. Rev. Environ. Resour. 35: 25-55. doi:10.1146/annurevenviron-033009-095548.
Pyšek, P., Kr?ivánek, M., and Jarošik, V. 2009. Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology, 90(10): 2734-2744. doi:10.1890/08-0857.1. PMID:19886483.
Pyšek, P., Jarosik, V., Hulme, P.E., Kühn, I., Wild, J., Arianoutsou, M., et al. 2010. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. 107(27): 12157-12162. doi:10.1073/pnas.1002314107. PMID:20534543.
R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. Available from https://www.R-project.org.
Reichard, S.H., and White, P. 2001. Horticulture as a pathway of invasive plant introductions in the United States. Bioscience, 51(2): 103. doi:10.1641/0006-3568(2001)051[0103:HAAPOI]2.0.CO;2.
Richardson, D.M., Carruthers, J., Hui, C., Impson, F.A.C., Miller, J.T., Robertson, M.P., et al. 2011. Human-mediated introductions of Australian acacias - a global experiment in biogeography. Divers. Distrib. 17(5): 771-787. doi:10.1111/j.1472-4642.2011.00824.x.
Rius, M., and Darling, J.A. 2014. How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol. Evol. 29(4): 233-242. doi:10.1016/j.tree.2014.02.003. PMID:24636862.
Rollins, L.A., Moles, A.T., Lam, S., Buitenwerf, R., Buswell, J.M., Brandenburger, C.R., et al. 2013. High genetic diversity is not essential for successful introduction. Ecol. Evol. 3(13): 4501-4517. doi:10.1002/ece3.824. PMID:24340190.
Ross-Ibarra, J., Wright, S.I., Foxe, J.P., Kawabe, A., DeRose-Wilson, L., Gos, G., et al. 2008. Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS ONE, 3(6): e2411. doi:10.1371/journal.pone.0002411. PMID:18545707.
Roux, C., Castric, V., Pauwels, M., Wright, S.I., Saumitou-Laprade, P., and Vekemans, X. 2011. Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation? PLoS ONE, 6(11): e26872. doi:10.1371/journal.pone.0026872. PMID:22069475.
Roux, C., Tsagkogeorga, G., Bierne, N., and Galtier, N. 2013. Crossing the species barrier: genomic hotspots of introgression between two highly divergent Ciona intestinalis species. Mol. Biol. Evol. 30(7): 1574-1587. doi:10.1093/molbev/mst066. PMID:23564941.
Roux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., and Bierne, N. 2016. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol. 14(12): e2000234. doi:10.1371/journal.pbio.2000234.PMID:28027292.
Sax, D.F., Stachowicz, J.J., Brown, J.H., Bruno, J.F., Dawson, M.N., Gaines, S.D., et al. 2007. Ecological and evolutionary insights from species invasions. Trends Ecol. Evol. 22(9): 465-471. doi:10.1016/j.tree.2007.06.009. PMID:17640765.
Schlarbaum, S.E., and Bagley, W.T. 1981. Intraspecific genetic variation of Quercus rubra L., Northern Red Oak. Silvae Genet. 30(2-3): 50-56.
Schlarbaum, S.E., Adams, R.P., Bagley, W.T., and Wayne, W.J. 1982. Postglacial migration pathways of Quercus rubra L., northern red oak, as indicated by regional genetic variation patterns. Silvae Genet. 31: 150-158.
Simberloff, D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40(1): 81-102. doi:10.1146/annurev.ecolsys.110308.120304.
Sork, V., Huang, S., and Wiener, E. 1993. Macrogeographic and fine-scale genetic structure in a North American oak species, Quercus rubra L. Ann. Sci. For. 50(1): 261s-270s. doi:10.1051/forest:19930726.
Stapley, J., Santure, A.W., and Dennis, S.R. 2015. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 24(9): 2241-2252. doi:10.1111/mec.13089. PMID:25611725.
Tatem, A.J., Hay, S.I., and Rogers, D.J. 2006. Global traffic and disease vector dispersal. Proc. Natl. Acad. Sci. 103(16): 6242-6247. doi:10.1073/pnas.0508391103. PMID: 16606847.
Timbal, J., Kremer, A., Le Goff, N., and Nepveu, G. 1994. Le chêne rouge d'Amérique. Institut National de la Recherche Agronomique, Paris.
Tsutsui, N.D., Suarez, A.V., Holway, D.A., and Case, T.J. 2000. Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. U.S.A. 97(11): 5948-5953. doi:10.1073/pnas.100110397. PMID:10811892.
United States Bureau of the Census. 1975. Water transportation. In Historical statistics of the United States: Colonial times to 1970. Vol. 2. pp. 742-766.Available from https://fraser.stlouisfed.org/scribd/?item-id=5808&filepath=/docs/publications/histstatus/hstat1970-cen-1975-v2.pdf.
Vellinga, E.C., Wolfe, B.E., and Pringle, A. 2009. Global patterns of ectomycorrhizal introductions.NewPhytol. 181(4):960-973. doi:10.1111/j.1469-8137.2008.02728.x. PMID:19170899.
Vilà, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarošík, V., Maron, J.L., et al. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14(7): 702-708. doi:10.1111/j.1461-0248.2011.01628.x. PMID:21592274.
Woziwoda, B., Kopec, D., and Witkowski, J. 2014. The negative impact of intentionally introduced Quercus rubra L. on a forest community. Acta Soc. Bot. Pol. 83(1): 39-49. doi:10.5586/asbp.2013.035.
Xu, C.-Y., Tang, S., Fatemi, M., Gross, C.L., Julien, M.H., Curtis, C., and van Klinken, R.D. 2015. Population structure and genetic diversity of invasive Phyla canescens: implications for the evolutionary potential. Ecosphere, 6(9): 1-21. doi:10.1890/ES14-00374.1.
Zanetto, A., and Kremer, A. 1995. Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. I. Monolocus patterns of variation. Heredity, 75(5): 506-517. doi:10.1038/hdy.1995.167.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.