Reference : A tiny magic drawing board to track the penetration of magnetic flux in superconductors
Scientific congresses and symposiums : Unpublished conference/Abstract
Physical, chemical, mathematical & earth Sciences : Physics
http://hdl.handle.net/2268/214398
A tiny magic drawing board to track the penetration of magnetic flux in superconductors
English
Silhanek, Alejandro mailto [Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés >]
11-Sep-2017
No
Yes
International
Vortex X
du 10 septembre 2017 au 15 septembre 2017
[en] magnetic flux imaging ; superconductivity
[en] Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.
Researchers
http://hdl.handle.net/2268/214398

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Rhodes-Silhanek.pdforal presentationAuthor preprint2.28 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.