[en] In early 2014, continuous monitoring with the Hisaki satellite discovered transient auroral emission at Jupiter during a period when the solar wind was relatively quiet for a few days. Simultaneous imaging made by the Hubble Space Telescope (HST) suggested that the transient aurora is associated with a global magnetospheric disturbance that spans from the inner to outer magnetosphere. However, the temporal and spatial evolutions of the magnetospheric disturbance were not resolved because of the lack of continuous monitoring of the transient aurora simultaneously with the imaging. Here we report the coordinated observation of the aurora and plasma torus made by Hisaki and HST during the approach phase of the Juno spacecraft in mid‐2016. On day 142, Hisaki detected a transient aurora with a maximum total H2 emission power of ~8.5 TW. The simultaneous HST imaging was indicative of a large “dawn storm,” which is associated with tail reconnection, at the onset of the transient aurora. The outer emission, which is associated with hot plasma injection in the inner magnetosphere, followed the dawn storm within less than two Jupiter rotations. The monitoring of the torus with Hisaki indicated that the hot plasma population increased in the torus during the transient aurora. These results imply that the magnetospheric disturbance is initiated via the tail reconnection and rapidly expands toward the inner magnetosphere, followed by the hot plasma injection reaching the plasma torus. This corresponds to the radially inward transport of the plasma and/or energy from the outer to the inner magnetosphere.
Research Center/Unit :
STAR Institute
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Kimura, Tomoki; Nishina Center for Accelerator‐Based Science, RIKEN, Saitama, Japan
Nichols, J.D.; University of Leicester
Gray, R.L.; Lancaster University
Tao, C.; National Institute of Information and Communications Technology, Tokyo, Japan
Murakami, G.; Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
Yamazaki, A.; Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
Badman, Sarah V.; Lancaster University
Tsuchiya, F.; Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Japan
Yoshioka, K.; Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, Japan
Kita, H.; Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Japan,
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Clark, G.; Johns Hopkins University
Yoshikawa, I.; Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Japan
Fujimoto, M.; Earth‐Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
Badman, S. V., et al. (2016), Weakening of Jupiter's main auroral emission during January 2014, Geophys. Res. Lett., 43, 988–997, doi:10.1002/2015GL067366.
Barbosa, D. D., and M. G. Kivelson (1983), Dawn-dusk electric field asymmetry of the Io plasma torus, Geophys. Res. Lett., 10, 210–213, doi:10.1029/GL010i003p00210.
Bonfond, B., D. Grodent, J.-C. Gérard, T. Stallard, J. T. Clarke, M. Yoneda, A. Radioti, and J. Gustin (2012), Auroral evidence of Io's control over the magnetosphere of Jupiter, Geophys. Res. Lett., 39, L01105, doi:10.1029/2011GL050253.
Bonfond, B., D. Grodent, S. V. Badman, J.-C. Gérard, and A. Radioti (2016), Dynamics of the flares in the active polar region of Jupiter, Geophys. Res. Lett., 43, 11,963–11,970, doi:10.1002/2016GL071757.
Clarke, J. T., H. W. Moos, S. K. Atreya, and A. L. Lane (1980), Observations from Earth orbit and variability of the polar aurora on Jupiter, Ap. J., 241, L179–L182.
Clarke, J. T., D. Grodent, S. Cowley, E. Bunce, J. Connerney, and T. Satoh (2004), Jupiter's aurora, in Jupiter. The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 639–670, Cambridge. Univ. Press, Cambridge, U. K.
Connerney, J. E. P., M. H. Acuña, N. F. Ness, and T. Satoh (1998), New models of Jupiter's magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103, 11,929–11,940.
Cowley, S. W. H., and E. J. Bunce (2003a), Modulation of Jovian middle magnetosphere currents and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: Initial conditions and steady state, Planet. Space Sci., 51, 31–56, doi:10.1016/S0032-0633(02)00130-7.
Cowley, S. W. H., and E. J. Bunce (2003b), Modulation of Jupiter's main auroral oval emissions by solar wind induced expansions and compressions of the magnetosphere, Planet. Space Sci., 51, 57–79, doi:10.1016/S0032-0633(02)00118-6.
Cowley, S. W. H., E. J. Bunce, T. S. Stallard, and S. Miller (2003), Jupiter's polar ionospheric flows: Theoretical interpretation, Geophys. Res. Lett., 30(5), 1220, doi:10.1029/2002GL016030.
Delamere, P. A., and F. Bagenal (2003), Modeling variability of plasma conditions in the Io torus, J. Geophys. Res., 108(A7), 1276, doi:10.1029/2002JA009706.
Dumont, M., D. Grodent, A. Radioti, B. Bonfond, and J.-C. Gérard (2014), Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections, J. Geophys. Res. Space Physics, 119, 10,068–10,077, doi:10.1002/2014JA020527.
Gray, R. L., S. V. Badman, B. Bonfond, T. Kimura, H. Misawa, J. D. Nichols, M. F. Vogt, and L. C. Ray (2016), Auroral evidence of radial transport at Jupiter during January 2014, J. Geophys. Res. Space Physics, 121, 9972–9984, doi:10.1002/2016JA023007.
Grodent, D. (2015), A brief review of ultraviolet auroral emissions on giant planets, Space Sci. Rev., 187, 23–50, doi:10.1007/s11214-014-0052-8.
Grodent, D., J.-C. Gérard, J. T. Clarke, G. R. Gladstone, and J. H. Waite Jr. (2004), A possible auroral signature of a magnetotail reconnection process on Jupiter, J. Geophys. Res., 109, A05201, doi:10.1029/2003JA010341.
Gurnett, D. A., et al. (2002), Control of Jupiter's radio emission and aurorae by the solar wind, Nature, 415, 985–987.
Hess, S. L. G., P. Delamere, V. Dols, B. Bonfond, and D. Swift (2010), Power transmission and particle acceleration along the Io flux tube, J. Geophys. Res., 115, A06205, doi:10.1029/2009JA014928.
Hess, S. L. G., E. Echer, and P. Zarka (2012), Solar wind pressure effects on Jupiter decametric radio emissions independent of Io, Planet. Space Sci., 70, 114–125.
Hess, S. L. G., E. Echer, P. Zarka, L. Lamy, and P. Delamere (2014), Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates, Planet. Space Sci., 99, 136–148.
Hill, T. W. (1979), Inertial limit on corotation, J. Geophys. Res., 84, 6554.
Hill, T. W. (2001), The Jovian auroral oval, J. Geophys. Res., 106, 8101–8107, doi:10.1029/2000JA000302.
Kasahara, S., E. A. Kronberg, T. Kimura, C. Tao, S. V. Badman, A. Masters, A. Retinò, N. Krupp, and M. Fujimoto (2013), Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere, J. Geophys. Res. Space Physics, 118, 375–384, doi:10.1029/2012JA018130.
Khurana, K. K., M. G. Kivelson, V. M. Vasyliūnas, N. Krupp, J. Woch, A. Lagg, B. H. Mauk, and W. S. Kurth (2004), The configuration of Jupiter's magnetosphere, in Jupiter, The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 593–616, Cambridge. Univ. Press, Cambridge, U. K.
Kimura, T., et al. (2015), Transient internally driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope, Geophys. Res. Lett., 42, 1662–1668, doi:10.1002/2015GL063272.
Kimura, T., et al. (2016), Jupiter's X-ray and EUV auroras monitored by Chandra, XMM-Newton, and Hisaki satellite, J. Geophys. Res. Space Physics, 121, 2308–2320, doi:10.1002/2015JA021893.
Kita, H., et al. (2016), Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere?, Geophys. Res. Lett., 43, 6790–6798, doi:10.1002/2016GL069481.
Kronberg, E. A., K.-H. Glassmeier, J. Woch, N. Krupp, A. Lagg, and M. K. Dougherty (2007), A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere, J. Geophys. Res., 112, A05203, doi:10.1029/2006JA011994.
Kronberg, E. A., J. Woch, N. Krupp, and A. Lagg (2008), Mass release process in the Jovian magnetosphere: Statistics on particle burst parameters, J. Geophys. Res., 113, A10202, doi:10.1029/2008JA013332.
Kuwabara, M., K. Yoshioka, G. Murakami, F. Tsuchiya, T. Kimura, A. Yamazaki, and I. Yoshikawa (2017), The geocoronal responses to the geomagnetic disturbances, J. Geophys. Res. Space Physics, 122, 1269–1276, doi:10.1002/2016JA023247.
Louarn, P., C. P. Paranicas, and W. S. Kurth (2014), Global magnetodisk disturbances and energetic particle injections at Jupiter, J. Geophys. Res. Space Physics, 119, 4495–4511, doi:10.1002/2014JA019846.
Mauk, B. H., J. T. Clarke, D. Grodent, J. H. Waite, C. P. Paranicas, and D. J. Williams (2002), Transient aurora on Jupiter from injections of magnetospheric electrons, Nature, 415, 1003–1005, doi:10.1038/4151003a.
Murakami, G. K. Y., et al. (2016), Response of Jupiter's inner magnetosphere to the solar wind derived from extreme ultraviolet monitoring of the Io plasma torus, Geophys. Res. Lett., 43, 12,308–12,316, doi:10.1002/2016GL071675.
Nichols, J. D., et al. (2017), Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno, Geophys. Res. Lett., 44, doi:10.1002/2017GL073029, in press.
Pallier, L., and R. Prangé (2001), More about the structure of the high latitude Jovian aurorae, Planet. Space Sci., 49, 1159–1173.
Pallier, L., and R. Prangé (2004), Detection of the southern counterpart of the Jovian northern polar cusp: Shared properties, Geophys. Res. Lett., 31, L06701, doi:10.1029/.2003GL018041.
Prangé, R., G. Chagnon, M. G. Kivelson, T. A. Livengood, and W. Kurth (2001), Temporal monitoring of Jupiter's auroral activity with IUE during the Galileo mission. Implications for magnetospheric processes, Planet. Space Sci., 49, 405–415, doi:10.1016/S0032-0633(00)00161-6.
Pryor, W. R., et al. (2005), Cassini UVIS observations of Jupiter's auroral variability, Icarus, 178, 312–326, doi:10.1016/j.icarus.2005.05.021.
Radioti, A., A. T. Tomás, D. Grodent, J.-C. Gérard, J. Gustin, B. Bonfond, N. Krupp, J. Woch, and J. D. Menietti (2009), Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations, Geophys. Res. Lett., 36, L07101, doi:10.1029/2009GL037857.
Steffl, A. J., A. Ian, F. Stewart, and F. Bagenal (2004), Cassini UVIS observations of the Io plasma torus: I. Initial results, Icarus, 172(1), 78–90, doi:10.1016/j.icarus.2003.12.027.
Steffl, A. J., P. A. Delamere, and F. Bagenal (2006), Cassini UVIS observations of the Io plasma torus III. Observations of temporal and azimuthal variability, Icarus, 180, 124–140.
Tao, C., T. Kimura, S. V. Badman, N. André, F. Tsuchiya, G. Murakami, K. Yoshioka, I. Yoshikawa, A. Yamazaki, and M. Fujimoto (2016a), Variation of Jupiter's aurora observed by Hisaki/EXCEED: 1. Observed characteristics of the auroral electron energies compared with observations performed using HST/STIS, J. Geophys. Res. Space Physics, 121, 4041–4054, doi:10.1002/2015JA021271.
Tao, C., T. Kimura, S. V. Badman, N. André, F. Tsuchiya, G. Murakami, K. Yoshioka, I. Yoshikawa, A. Yamazaki, and M. Fujimoto (2016b), Variation of Jupiter's aurora observed by Hisaki/EXCEED: 2. Estimations of auroral parameters and magnetospheric dynamics, J. Geophys. Res. Space Physics, 120, 4055–4071, doi:10.1002/2015JA021272.
Tomás, A. T., J. Woch, N. Krupp, A. Lagg, K.-H. Glassmeier, and W. S. Kurth (2004), Energetic electrons in the inner part of the Jovian magnetosphere and their relation to auroral emissions, J. Geophys. Res., 109, A06203, doi:10.1029/2004JA010405.
Tsuchiya, F., et al. (2010), Plan for observing magnetospheres of outer planets by using the EUV spectrograph onboard the SPRINT-A/EXCEED mission, Adv. Geosci., 25, 57–71, doi:10.1142/9789814355377_0005.
Tsuchiya, F., et al. (2015), Local electron heating in the Io plasma torus associated with Io from HISAKI satellite observation, J. Geophys. Res. Space Physics, 120, 10,317–10,333, doi:10.1002/2015JA021420.
Vasyliūnas, V. M. (1983), Plasma distribution and flow, in Physics of the Jovian Magnetosphere, edited by A. J. Dessler, pp. 395–453, Cambridge Univ. Press, New York.
Waite, J. H., Jr., et al. (2001), An auroral are at Jupiter, Nature, 410, 787–789, doi:10.1038/35071018.
Woch, J., N. Krupp, and A. Lagg (2002), Particle bursts in the Jovian magnetosphere: Evidence for a near-Jupiter neutral line, Geophys. Res. Lett., 29(7), 1138, doi:10.1029/2001GL014080.
Yamazaki, A., et al. (2014), Field-of-view guiding camera on the HISAKI (SPRINT-A) satellite, Space Sci. Rev, 184, 259–274, doi:10.1007/s11214-014-0106-y.
Yoneda, M., M. Kagitani, F. Tsuchiya, T. Sakanoi, and S. Okano (2015), Brightening event seen in observations of Jupiter's extended sodium nebula, Icarus, 261, 31–33, doi:10.1016/j.icarus.2015.07.037.
Yoshikawa, I., et al. (2016), Properties of hot electrons in the Jovian inner magnetosphere deduced from extended observations of the Io plasma torus, Geophys. Res. Lett., 43, 11,552–11,557, doi:10.1002/2016GL070706.
Yoshioka, K., G. Murakami, F. Tsuchiya, M. Kagitani, and I. Yoshikawa (2011), Hot electron component in the Io plasma torus confirmed through EUV spectral analysis, J. Geophys. Res., 116, A09204, doi:10.1029/2011JA016583.
Yoshioka, K., G. Murakami, A. Yamazaki, F. Tsuchiya, M. Kagitani, T. Sakanoi, T. Kimura, K. Uemizu, K. Uji, and I. Yoshikawa (2013), The extreme ultraviolet spectroscope for planetary science, EXCEED, Planet. Space Sci., 85, 250–260, doi:10.1016/j.pss.2013.06.021.
Yoshioka, K., et al. (2014), The evidence for the global electron transportation into the Jovian inner magnetosphere, Science, 345(6204), 1581–1584, doi:10.1126/science.1256259.