Junge, K., Eicken, H., Deming, J.W., Bacterial Activity at −2 to −20 degrees C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70 (2004), 550–557, 10.1128/AEM.70.1.550-557.2004.
Mykytczuk, N.C., Foote, S.J., Omelon, C.R., Southam, G., Greer, C.W., Whyte, L.G., Bacterial growth at −15 degrees C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7 (2013), 1211–1226, 10.1038/ismej.2013.8.
Latif, H., Lerman, J.A., Portnoy, V.A., Tarasova, Y., Nagarajan, H., Schrimpe-Rutledge, A.C., Smith, R.D., Adkins, J.N., Lee, D.H., Qiu, Y., Zengler, K., The genome organization of Thermotoga maritima reflects its lifestyle. PLoS Genet., 9, 2013, e1003485, 10.1371/journal.pgen.1003485.
Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M., Huber, R., Feldman, R.A., Short, J.M., Olsen, G.J., Swanson, R.V., The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392 (1998), 353–358, 10.1038/32831.
Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W., Stetter, K.O., Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1 (1997), 14–21, 10.1007/s007920050010.
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., Horikoshi, K., Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 10949–10954, 10.1073/pnas.0712334105.
Feller, G., Protein stability and enzyme activity at extreme biological temperatures. J. Phys.-Condens. Mat., 22, 2010, 10.1088/0953-8984/1022/1032/323101.
Feller, G., Psychrophilic enzymes: from folding to function and biotechnology. Scientifica, 512840, 2013, 10.1155/2013/512840.
Feller, G., Gerday, C., Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1 (2003), 200–208, 10.1038/nrmicro773.
Struvay, C., Feller, G., Optimization to low temperature activity in psychrophilic enzymes. Int. J. Mol. Sci. 13 (2012), 11643–11665, 10.3390/ijms130911643.
Kohen, A., Cannio, R., Bartolucci, S., Klinman, J.P., Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399 (1999), 496–499, 10.1038/20981.
Kumar, S., Nussinov, R., How do thermophilic proteins deal with heat?. Cell. Mol. Life Sci. 58 (2001), 1216–1233, 10.1007/PL00000935.
Hoffmann, A., Bukau, B., Kramer, G., Structure and function of the molecular chaperone Trigger Factor. Biochim. Biophys. Acta 2010 (1803), 650–661, 10.1016/j.bbamcr.2010.01.017.
Medigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P.N., Cheung, F., Cruveiller, S., D'Amico, S., Duilio, A., Fang, G., Feller, G., Ho, C., Mangenot, S., Marino, G., Nilsson, J., Parrilli, E., Rocha, E.P., Rouy, Z., Sekowska, A., Tutino, M.L., Vallenet, D., von Heijne, G., Danchin, A., Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 15 (2005), 1325–1335, 10.1101/gr.4126905.
Struvay, C., Negro, S., Matagne, A., Feller, G., Energetics of protein stability at extreme environmental temperatures in bacterial trigger factors. Biochemistry 52 (2013), 2982–2990, 10.1021/bi4002387.
Mitsuya, D., Tanaka, S., Matsumura, H., Urano, N., Takano, K., Ogasahara, K., Takehira, M., Yutani, K., Ishida, M., Strategy for cold adaptation of the tryptophan synthase alpha subunit from the psychrophile Shewanella frigidimarina K14-2: crystal structure and physicochemical properties. J. Biochem. 155 (2014), 73–82, 10.1093/jb/mvt098.
Nickson, A.A., Clarke, J., What lessons can be learned from studying the folding of homologous proteins?. Methods 52 (2010), 38–50, 10.1016/j.ymeth.2010.06.003.
Perl, D., Welker, C., Schindler, T., Schroder, K., Marahiel, M.A., Jaenicke, R., Schmid, F.X., Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nat. Struct. Biol. 5 (1998), 229–235 PMID: 9501917.
Topping, T.B., Gloss, L.M., Stability and folding mechanism of mesophilic, thermophilic and hyperthermophilic archael histones: the importance of folding intermediates. J. Mol. Biol. 342 (2004), 247–260, 10.1016/j.jmb.2004.07.045.
Wallgren, M., Aden, J., Pylypenko, O., Mikaelsson, T., Johansson, L.B., Rak, A., Wolf-Watz, M., Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state. J. Mol. Biol. 379 (2008), 845–858, 10.1016/j.jmb.2008.04.007.
Luke, K.A., Higgins, C.L., Wittung-Stafshede, P., Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J. 274 (2007), 4023–4033, 10.1111/j.1742-4658.2007.05955.x.
Mukaiyama, A., Takano, K., Slow unfolding of monomeric proteins from hyperthermophiles with reversible unfolding. Int. J. Mol. Sci. 10 (2009), 1369–1385, 10.3390/ijms10031369.
Ogasahara, K., Nakamura, M., Nakura, S., Tsunasawa, S., Kato, I., Yoshimoto, T., Yutani, K., The unusually slow unfolding rate causes the high stability of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus: equilibrium and kinetic studies of guanidine hydrochloride-induced unfolding and refolding. Biochemistry 37 (1998), 17537–17544, 10.1021/bi9814585.
Okada, J., Okamoto, T., Mukaiyama, A., Tadokoro, T., You, D.J., Chon, H., Koga, Y., Takano, K., Kanaya, S., Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins. BMC Evol. Biol., 10, 2010, 207, 10.1186/1471-2148-10-207.
Kelch, B.A., Agard, D.A., Mesophile versus thermophile: insights into the structural mechanisms of kinetic stability. J. Mol. Biol. 370 (2007), 784–795, 10.1016/j.jmb.2007.04.078.
Wittung-Stafshede, P., Slow unfolding explains high stability of thermostable ferredoxins: common mechanism governing thermostability?. Biochim. Biophys. Acta 2004 (1700), 1–4, 10.1016/j.bbapap.2004.04.002.
Du, X., Sang, P., Xia, Y.L., Li, Y., Liang, J., Ai, S.M., Ji, X.L., Fu, Y.X., Liu, S.Q., Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations. J. Biomol. Struct. Dyn. 35 (2017), 1500–1517, 10.1080/07391102.2016.1188155.
Cipolla, A., D'Amico, S., Barumandzadeh, R., Matagne, A., Feller, G., Stepwise adaptations to low temperature as revealed by multiple mutants of psychrophilic alpha-amylase from Antarctic bacterium. J. Biol. Chem. 286 (2011), 38348–38355, 10.1074/jbc.M111.274423.
Dong, H., Mukaiyama, A., Tadokoro, T., Koga, Y., Takano, K., Kanaya, S., Hydrophobic effect on the stability and folding of a hyperthermophilic protein. J. Mol. Biol. 378 (2008), 264–272, 10.1016/j.jmb.2008.02.039.
Godin-Roulling, A., Schmidpeter, P.A., Schmid, F.X., Feller, G., Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures. Environ. Microbiol. 17 (2015), 2407–2420, 10.1111/1462-2920.12707.
King, J., Haase-Pettingell, C., Robinson, A.S., Speed, M., Mitraki, A., Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J. 10 (1996), 57–66 PMCID: PMC2040114.
Giuliani, M., Parrilli, E., Sannino, F., Apuzzo, G., Marino, G., Tutino, M.L., Soluble recombinant protein production in Pseudoalteromonas haloplanktis TAC125. Methods Mol. Biol. 1258 (2015), 243–257, 10.1007/978-1-4939-2205-5_13.
Suno, R., Taguchi, H., Masui, R., Odaka, M., Yoshida, M., Trigger factor from Thermus thermophilus is a Zn 2+ -dependent chaperone. J. Biol. Chem. 279 (2004), 6380–6384, 10.1074/jbc.M311572200.
Hartl, F.U., Hayer-Hartl, M., Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16 (2009), 574–581, 10.1038/nsmb.1591.
Large, A.T., Goldberg, M.D., Lund, P.A., Chaperones and protein folding in the archaea. Biochem. Soc. Trans. 37 (2009), 46–51, 10.1042/BST0370046.
Baldwin, R.L., The search for folding intermediates and the mechanism of protein folding. Annu. Rev. Biophys. 37 (2008), 1–21, 10.1146/annurev.biophys.37.032807.125948.
Schmid, F.X., Prolyl isomerization in protein folding. Buchner, J., Kiefhaber, T., (eds.) Protein Folding Handbook, 2005, Wiley-VCH, Weinheim, 916–945, 10.1002/9783527619498.ch25.
Zoldak, G., Aumuller, T., Lucke, C., Hritz, J., Oostenbrink, C., Fischer, G., Schmid, F.X., A library of fluorescent peptides for exploring the substrate specificities of prolyl isomerases. Biochemistry 48 (2009), 10423–10436, 10.1021/bi9014242.
Scholz, C., Stoller, G., Zarnt, T., Fischer, G., Schmid, F.X., Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. EMBO J. 16 (1997), 54–58, 10.1093/emboj/16.1.54.
Maruyama, T., Suzuki, R., Furutani, M., Archaeal peptidyl prolyl cis-trans isomerases (PPIases) update 2004. Front. Biosci. 9 (2004), 1680–1720, 10.2741/1361.
D'Amico, S., Marx, J.C., Gerday, C., Feller, G., Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278 (2003), 7891–7896, 10.1074/jbc.M212508200.
Ladani, S.T., Souffrant, M.G., Barman, A., Hamelberg, D., Computational perspective and evaluation of plausible catalytic mechanisms of peptidyl-prolyl cis-trans isomerases. Biochim. Biophys. Acta 2015 (1850), 1994–2004, 10.1016/j.bbagen.2014.12.023.
Piette, F., D'Amico, S., Struvay, C., Mazzucchelli, G., Renaut, J., Tutino, M.L., Danchin, A., Leprince, P., Feller, G., Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol. Microbiol. 76 (2010), 120–132, 10.1111/j.1365-2958.2010.07084.x.
Piette, F., Struvay, C., Feller, G., The protein folding challenge in psychrophiles: facts and current issues. Environ. Microbiol. 13 (2011), 1924–1933, 10.1111/j.1462-2920.2011.02436.x.
Feller, G., d'Amico, D., Gerday, C., Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry 38 (1999), 4613–4619, 10.1021/bi982650+.
Thomas, T., Cavicchioli, R., Effect of temperature on stability and activity of elongation factor 2 proteins from Antarctic and thermophilic methanogens. J. Bacteriol. 182 (2000), 1328–1332, 10.1128/JB.182.5.1328-1332.2000.
Collins, T., Meuwis, M.A., Gerday, C., Feller, G., Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol. 328 (2003), 419–428, 10.1016/S0022-2836(03)00287-0.
Georlette, D., Damien, B., Blaise, V., Depiereux, E., Uversky, V.N., Gerday, C., Feller, G., Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J. Biol. Chem. 278 (2003), 37015–37023, 10.1074/jbc.M305142200.
Cipolla, A., Delbrassine, F., Da Lage, J.L., Feller, G., Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 94 (2012), 1943–1950, 10.1016/j.biochi.2012.05.013.
LeMaster, D.M., Tang, J., Hernandez, G., Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation. Proteins 57 (2004), 118–127, 10.1002/prot.20181.
Sawano, M., Yamamoto, H., Ogasahara, K., Kidokoro, S., Katoh, S., Ohnuma, T., Katoh, E., Yokoyama, S., Yutani, K., Thermodynamic basis for the stabilities of three CutA1s from Pyrococcus horikoshii, Thermus thermophilus, and Oryza sativa, with unusually high denaturation temperatures. Biochemistry 47 (2008), 721–730, 10.1021/bi701761m.
Kumar, S., Nussinov, R., Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability. Biophys. Chem. 111 (2004), 235–246, 10.1016/j.bpc.2004.06.005.
Razvi, A., Scholtz, J.M., Lessons in stability from thermophilic proteins. Protein Sci. 15 (2006), 1569–1578, 10.1110/ps.062130306.
Rees, D.C., Robertson, A.D., Some thermodynamic implications for the thermostability of proteins. Protein Sci. 10 (2001), 1187–1194, 10.1110/ps.180101.
Kumar, S., Tsai, C.J., Nussinov, R., Maximal stabilities of reversible two-state proteins. Biochemistry 41 (2002), 5359–5374, 10.1021/bi012154c.
Garcia-Arribas, O., Mateo, R., Tomczak, M.M., Davies, P.L., Mateu, M.G., Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges. Protein Sci. 16 (2007), 227–238, 10.1110/ps.062448907.
Knapp, S., Karshikoff, A., Berndt, K.D., Christova, P., Atanasov, B., Ladenstein, R., Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus. J. Mol. Biol. 264 (1996), 1132–1144, 10.1006/jmbi.1996.0701.
McCrary, B.S., Edmondson, S.P., Shriver, J.W., Hyperthermophile protein folding thermodynamics: differential scanning calorimetry and chemical denaturation of Sac7d. J. Mol. Biol. 264 (1996), 784–805, 10.1006/jmbi.1996.0677.
Robic, S., Guzman-Casado, M., Sanchez-Ruiz, J.M., Marqusee, S., Role of residual structure in the unfolded state of a thermophilic protein. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 11345–11349, 10.1073/pnas.1635051100.