magnetic properties; Mossbauer spectroscopy; EXAFS
Abstract :
[en] In this report, we have examined the evolution of the structure and rich magnetic transitions such as a paramagnetic to ferrimagnetic phase transition at the Curie temperature (TC), spiral ordering temperature (TS) and lock-in temperature (TL) observed in the CoCr2O4 spinel multiferroic after substituting Fe. The crystal structure, microstructure and cation distribution among the tetrahedral (A) and octahedral (B) sites in the spinel lattice are characterised by X-ray diffraction, transmission electron microscopy, Extended X-ray Absorption Fine Structure (EXAFS) and Mössbauer spectroscopy. Due to the same radial distances of the first coordination shell in both tetrahedral and octahedral environments observed in EXAFS spectra, the position of the second coordination shell specifies the preference of more Fe ions towards the A site at x = 0.1. At x = 0.5, more Fe ions favour the B site. The cation distribution quantitatively obtained from the Mössbauer spectral analysis shows that while 60% of Fe ions occupy the A site in x = 0.1, 40% occupy it in x = 0.5. Surprisingly at x = 0.3, Fe ions are distributed equally among the A and B sites. dc magnetization reveals an increase in TC from 102 K to 200 K and in TS from 26 to 40 K with an increase in Fe concentration, indicating an enhancement in A–B exchange interaction at the expense of B–B. No report has until now demonstrated such an enhancement in TS either in pure or in doped CoCr2O4. Furthermore, frequency-dependent ac susceptibility (χ) data fitted with different phenomenological models such as the Néel–Arrhenius, Vogel–Fulcher and power law confirm a spin-glass and/or cluster-glass behaviour in nanoparticles of CoCr2−xFexO4.
Disciplines :
Chemistry
Author, co-author :
Kumar, Durgesh; Indian Institute of Technology (BHU), Varanasi, 221005, India > School of Materials Science and Technology,
Banerjee, Alok; University Campus, Khandwa Road, Indore, 452001, India > UGC-DAE Consortium for Scientific Research
Mahmoud, Abdelfattah ; Université de Liège > Département de chimie (sciences) > LCIS - GreenMAT
Rath, Chandana; Indian Institute of Technology (BHU), Varanasi, 221005, India > Indian Institute of Technology (BHU), Varanasi, 221005, India
Language :
English
Title :
Cation Distribution Dependent Magnetic Properties in CoCr 2-x Fe x O 4 (x= 0.1 to 0.5): EXAFS, Mӧssbauer and Magnetic Measurements
Publication date :
29 July 2017
Journal title :
Journal of the Chemical Society. Dalton Transactions
S. Basu C. Nayak A. K. Yadav A. Agrawal A. K. Poswal D. Bhattacharyya S. N. Jha N. K. Sahoo J. Phys.: Conf. Ser. 2014 493 012032
X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, ed., D. C. Konigsberger, and, R. Prince, Wiley, New York, 1988
M. Newville B. Ravel D. Haskel J. J. Rehr E. A. Stern Y. Yacoby Physica B 1995 154 208
R. D. Shannon C. T. Prewitt Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1969 25 925
J. Wong F. W. Lyte R. P. Messmer D. H. Maylotte Phys. Rev. B: Condens. Matter 1984 30 5596
F. de Groot Chem. Rev. 2001 101 1779
L. A. Grunes Phys. Rev. B: Condens. Matter 1983 27 2111 2131
T. E. Westre P. Kennepohl J. G. DeWitt B. Hedman K. O. Hodgson E. I. Solomon J. Am. Chem. Soc. 1997 119 6297
P. Chaurand J. Rose V. Briois M. Salome O. Proux V. Nassif L. Olivi J. Susini J. L. Hazemann J. Y. Bottero J. Phys. Chem. B 2007 111 5101
K. G. Jagadish D. Kumar A. Banerjee V. Sathe G. Aquilantic C. Rath RSC Adv. 2016 6 63809
A. I. Frenkel J. Synchrotron Radiat. 1999 6 293 295
A. I. Frenkel A. Yevick C. Cooper R. Vasic Annu. Rev. Anal. Chem. 2011 4 23 39
U. Gonser, Mössbauer spectroscopy, Springer-Verlag, 1975
G. Datt M. S. Bishwas M. M. Raja A. C. Abhyankar Nanoscale 2016 8 5200
T. C. Gibb and N. N. Greenwood, Mössbauer spectroscopy, Champan and Hall Ltd, London, 1971
R. K. Sharma V. Sebastian N. Lakshmi K. Venugopalan V. R. Reddy A. Gupta Phys. Rev. B: Condens. Matter 2007 75 144419
K. Krieble C. C. H. Lo Y. Melikhov J. E. Snyder J. Appl. Phys. 2006 99 08M912
M. S. Senn J. P. Wright J. P. Attfield Nature 2012 481 173 176
N. Lakshmi H. Bhargava O. P. Suwalka K. Venugopalan V. Sebastian V. R. Reddy A. Gupta Phys. Rev. B: Condens. Matter 2009 80 174425
L. Wang F. S. Li J. Magn. Magn. Mater. 2001 223 233
C. K. Ong H. C. Fang Z. Yang Y. Li J. Magn. Magn. Mater. 2000 213 413
Y. Xu J. Sherwood Y. Qin R. A. Holler Y. Bao Nanoscale 2015 7 12641
D. Kumar P. Mohanty V. P. Singh J. K. Galivarapu A. Banerjee V. Ganesan R. Chandana Mater. Res. Bull. 2014 54 78 83
C. Pang L. Gao A. Chaturvedi N. Bao K. Yanagisawa L. Shen A. Gupta J. Mater. Chem. C 2015 3 12077 12082
J. A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor and Francis, London, 1993
S. Mukherjee R. Ranganathan P. S. Anilkumar P. A. Joy Phys. Rev. B: Condens. Matter 1996 54 9267
I. G. Deac J. F. Mitchell P. Schiffer Phys. Rev. B: Condens. Matter 2001 63 172408
X. H. Huang J. F. Ding Z. L. Jiang Y. W. Yin Q. X. Yu X. G. Lia J. Appl. Phys. 2009 106 083904
M. Knobel W. C. Nunes L. M. Socolovsky E. De. Biasi J. M. Vargas J. C. Denardin J. Nanosci. Nanotechnol. 2008 8 2836
A. K. Pramanik A. Banerjee Phys. Rev. B: Condens. Matter 2010 82 094402
J. L. Tholence, in Magnetic Susceptibility of Superconductors and Other Spin Systems, ed., R. A. Hein, T. L. Francavilla, and, D. H. Liebenberg, Plenum Press, New York, 1991, p. 503
F. J. B. Callej and S. Fakirov, Microhardness of polymers, Cambridge University Press, Cambridge, 2007
K. Binder A. P. Young Rev. Mod. Phys. 1986 58 801
R. N. Bhowmik R. Ranganathan R. Nagarajan Phys. Rev. B: Condens. Matter 2006 73 144413