[en] The faecal indicator Escherichia coli plays a central role in water quality assessment and
monitoring. It is therefore essential to understand its fate under various environmental constraints
such as predation by bacterivorous zooplankton. Whereas most studies have examined
how protozooplankton communities (heterotrophic nanoflagellates and ciliates) affect
the fate of E. coli in water, the capacity of metazooplankton to control the faecal indicator
remains poorly understood. In this study, we investigated how the common filter-feeding cladoceran,
Daphnia pulex, affects the fate of E. coli under different experimental conditions.
Daphnia ingested E. coli and increased its loss rates in water, but the latter rates decreased
from 1.65 d-1 to 0.62 d-1 after a 1,000-fold reduction in E. coli initial concentrations, due to
lower probability of encounter between Daphnia and E. coli. The combined use of culture
and PMA qPCR (viability-qPCR) demonstrated that exposure to Daphnia did not result into
the formation of viable but non-culturable E. coli cells. In lake water, a significant part of E.
coli population loss was associated with matrix-related factors, most likely due to predation
by other bacterivorous biota and/or bacterial competition. However, when exposing E. coli
to a D. pulex gradient (from 0 to 65 ind.L-1), we observed an increasing impact of Daphnia
on E. coli loss rates, which reached 0.47 d-1 in presence of 65 ind.L-1. Our results suggest
that the filter-feeder can exert a non-negligible predation pressure on E. coli, especially during
seasonal Daphnia population peaks. Similar trials using other Daphnia species as well
as stressed E. coli cells will increase our knowledge on the capacity of this widespread zooplankter
to control E. coli in freshwater resources. Based on our results, we strongly advocate
the use of natural matrices to study these biotic interactions in order to avoid
overestimation of Daphnia impact.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Burnet, Jean-Baptiste; Polytechnique Montréal > Civil, Geological and Mining Engineering
Faraj, Tarek; Polytechnique Montréal > civil, Geological and Mining Engineering
Cauchie, Henry-Michel; Luxembourg Institute of Science and Technology > Environmental Research and Innovation
Joaquim-Justo, Célia ; Université de Liège > Département de Biologie, Ecologie et Evolution > Ecologie animale et écotoxicologie
Servais, Pierre; Université Libre de Bruxelles - ULB > Ecologie des systèmes aquatiques
Prévost, Michèle; Polytechnique Montréal > Civil, Geological and Mining Engineering
Dorner, Sarah M; Polytechnique Montréal > Civil, Geological and Mining Engineering
Language :
English
Title :
How does the cladoceran Daphnia pulex affectt he fate of Escherichia coli in water?
Publication date :
2017
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, San Franscisco, United States - California
USEPA. LT2ESWTR Long Term Second Enhanced Surface Water Treatment Rule. USEPA, Washington DC, 2006.
EU. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Official Journal of the European Union, 2006.
Blaustein RA, Pachepsky Y, Hill RL, Shelton DR, Whelan G. Escherichia coli survival in waters: temperature dependence. Water Res. 2013; 47: 569-578. doi: 10.1016/j.watres.2012.10.027 PMID: 23182082
Whitman RL, Przybyla-Kelly K, Shively DA, Nevers MB, Byappanahalli MN. Sunlight, season, snowmelt, storm, and source affect E. coli populations in an artificially ponded stream. Sci Tot Environ. 2008; 390: 448-455.
Wanjugi P, Harwood VJ. The influence of predation and competition on the survival of commensal and pathogenic fecal bacteria in aquatic habitats. Environ Microbiol. 2013; 15: 517-526. doi: 10.1111/j. 1462-2920.2012.02877.x PMID: 23013262
Barcina I, Lebaron P, Vives-Rego J. Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiol Ecol. 1997; 23: 1-9.
Boehm AB, Keymer DP, Shellenbarger GG. An analytical model of enterococci inactivation, grazing, and transport in the surf zone of a marine beach. Water Res. 2005; 39: 3565-3578. doi: 10.1016/j. watres.2005.06.026 PMID: 16095656
McCambridge J, McMeekin TA. Relative effects of bacterial and protozoan predators on survival of Escherichia coli in estuarine water samples. Appl Environ Microbiol. 1980; 40: 907-911. PMID: 7004353
Wcislo R, Chrost RJ. Survival of Escherichia coli in freshwater. Pol J Environ Stud. 2000; 9: 215-222.
Menon P, Billen G, Servais P. Mortality rates of autochthonous and fecal bacteria in natural aquatic ecosystems. Water Res. 2003; 37: 4151-4158. doi: 10.1016/S0043-1354(03)00349-X PMID: 12946897
Rhodes MW, Kator H. Survival of Escherichia coli and Salmonella spp. in estuarine environments. Appl Environ Microbiol. 1988; 54: 2902-2907. PMID: 3066291
Sanders RW, Porter KG, Benett SJ, DeBiase AE. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr. 1989; 34: 673-687.
Sherr BF, Sherr EB, Fallon RD. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 1987; 53: 958-965. PMID: 16347355
Bichai F, Payment P, Barbeau B. Protection of waterborne pathogens by higher organisms in drinking water: a review. Can J Microbiol. 2008; 54: 509-524. doi: 10.1139/w08-039 PMID: 18641697
Forro L, Korovchinsky NM, Kotov AA, Petrusek A. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia. 2008; 595: 177-184.
Brendelberger H. Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnol Oceanogr. 1991; 36: 884-894.
Peterson BJ, Hobbie JE, Haney JF. Daphnia grazing on natural bacteria. Limnol Oceanogr. 1978; 23: 1039-1044.
Riemann B. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl Environ Microbiol. 1985; 50: 187-193. PMID: 16346844
Degans H, Zollner E, Gucht K, Meester L, Jurgens K. Rapid Daphnia-mediated changes in microbial community structure: an experimental study. FEMS Microbiol Ecol. 2002; 42: 137-149. doi: 10.1111/j. 1574-6941.2002.tb01003.x PMID: 19709273
Güde H. Direct and indirect effects of crustacean zooplankton on bacterioplankton in Lake Constance. Hydrobiologia. 1988; 159: 63-73.
Kamjunke N, Zehrer RF. Direct and indirect effects of strong grazing by Daphnia galeata on bacterial production in an enclosure experiment. J Plankton Res. 1999; 21: 1175-1181.
Vaqué D, Pace ML. Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food-web structure. J Plankton Res. 1992; 14: 307-321.
Jürgens K, Pernthaler J, Schalla S, Amann R. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol. 1999; 65: 1241-1250. PMID: 10049890
Connelly SJ, Wolyniak EA, Dieter KL, Williamson CE, Jellison KL. Impact of zooplankton grazing on the excystation, viability, and infectivity of the protozoan pathogens Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol. 2007; 73: 7277-7282. doi: 10.1128/AEM.01206-07 PMID: 17873076
Stott R, May E, Ramirez E, Warren A. Predation of Cryptosporidium oocysts by protozoa and rotifers: Implications for water quality and public health. Water Sci Technol. 2003; 47, 77-83.
Schallenberg M, Bremer PJ, Henkel S, Launhardt A, Burns CW. Survival of Campylobacter jejuni in water: effect of grazing by the freshwater crustacean Daphnia carinata (Cladocera). Appl Environ Microbiol. 2005; 71: 5085-5088. doi: 10.1128/AEM.71.9.5085-5088.2005 PMID: 16151090
Bichai F, Barbeau B, Dullemont Y, Hijnen W. Role of predation by zooplankton in transport and fate of protozoan (oo)cysts in granular activated carbon filtration. Water Res. 2010; 44: 1072-1081. doi: 10. 1016/j.watres.2009.09.001 PMID: 19853879
Lin T, Chen W, Cai B. Inactivation mechanism of chlorination in Escherichia coli internalized in Limnoithona sinensis and Daphnia magna. Water Res. 2016; 89: 20-27. doi: 10.1016/j.watres.2015.11. 015 PMID: 26624518
Hadas O, Bachrach U, Kott Y, Cavari B. Assimilation of E. coli cells by Daphnia magna on the whole organism level. Hydrobiologia. 1983; 102: 163-169.
McMahon JW, Rigler FH. Feeding rate of Daphnia magna Straus in different foods labeled with radioactive phosphorus. Limnol Oceanogr. 1965; 10: 105-113.
Wiedner C, Vareschi E. Evaluation of a fluorescent microparticle technique for measuring filtering rates of Daphnia. Hydrobiologia. 1995; 302: 89-96.
Cangelosi GA, Meschke JS. Dead or alive: molecular assessment of microbial viability. Appl Environ Microbiol. 2014; 80: 5884-5891. doi: 10.1128/AEM.01763-14 PMID: 25038100
Servais P, Prats J, Passerat J, Garcia-Armisen T. Abundance of culturable versus viable Escherichia coli in freshwater. Can J Microbiol. 2009; 55: 905-909. doi: 10.1139/w09-043 PMID: 19767865
Fittipaldi M, Nocker A, Codony F. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J Microbiol Methods. 2012; 91: 276-289. doi: 10. 1016/j.mimet.2012.08.007 PMID: 22940102
Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R. LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods. 1999; 37: 77-86. PMID: 10395466
Klüttgen B, Dülmer U, Engels M, Ratte HT. ADaM, an artificial freshwater for the culture of zooplankton. Water Res. 1994; 28: 743-746.
Ndong M, Bird D, Nguyen-Quang T, de Boutray ML, Zamyadi A, Vincon-Leite B, et al. Estimating the risk of cyanobacterial occurrence using an index integrating meteorological factors: application to drinking water production. Water Res. 2014; 56: 98-108. doi: 10.1016/j.watres.2014.02.023 PMID: 24657327
USEPA. Method 1604: total coliforms and Escherichia coli in water by membrane filtration using a simultaneous detection technique (MI medium). Washington, DC: Environmental Protection Agency, Office of Water; 2002, EPA-821-R-02-024.
Chern EC, Siefring S, Paar J, Doolittle M, Haugland RA. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes. Lett Appl Microbiol. 2011; 52: 298-306. doi: 10.1111/j.1472-765X.2010.03001.x PMID: 21204885
Thouvenot A, Richardot M, Debroas D, Devaux J. Bacterivory of metazooplankton, ciliates and flagellates in a newly flooded reservoir. J Plankt Res. 1999; 21: 1659-1679.
Burns CW. The relationship between body size of filter-feeding cladocera and the maximum size of particle ingested. Limnol Oceanogr. 1968; 13: 675-678.
Jürgens K. Impact of Daphnia on planktonic microbial food webs: a review. Mar Microb Food Webs. 1994; 8: 295-324.
Fox H. Anal and oral water intake by Crustacea. Nature. 1952; 169: 1051-1052.
Jackson BP, Pace HE, Lanzirotti A, Smith R, Ranville JF. Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna. Anal Bioanal Chem. 2009; 394: 911-917. doi: 10.1007/s00216-009-2768-y PMID: 19340415
Tezuka Y. Feeding of Daphnia on planktonic bacteria. Jap J Ecol. 1971; 21: 127-134.
Gophen M, Cavari BZ, Berman T. Zooplantkton feeding on differentially labelled algae and bacteria. Nature. 1974; 247: 393-394.
Freese HM, Martin-Creuzburg D. Food quality of mixed bacteria-algae diets for Daphnia magna. Hydrobiologia. 2013; 715: 63-76.
King CH, Sanders RW, Shotts EB, Porter KG. Differential survival of bacteria ingested by zooplankton from a stratified eutrophic lake. Limnol Oceanogr. 1991; 36: 829-845.
Pilati A, Wurtsbaugh WA, Brindza NR. Evidence of coprophagy in freshwater zooplankton. Freshw Biol. 2004; 49: 913-918.
Walters SP, Yamahara KM, Boehm AB. Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters. Water Res. 2009; 43: 4929-4939. doi: 10.1016/j.watres.2009.05.047 PMID: 19616273
Simek K, Hartman P, Nedoma J, Pernthaler J, Springman D, Vrba J, et al. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during summer phytoplankton maximum. Aquat Microb Ecol. 1997; 12: 49-63.
Helgen J. Feeding rate inhibition in crowded Daphnia pulex. Hydrobiologia. 1987; 154: 113-119.
Lürling M, Roozen F, Van Donk E, Goser B. Response of Daphnia to substances released from crowded congeners and conspecifics. J Plankton Res. 2003; 25: 967-978.
Davies J. Evidence for a diurnal horizontal migration in Daphnia hyalina lacustris Sars. Limnol Oceanogr. 1985; 120: 103-105.
Jürgens K, Gasol JM, Massana R, Pedros-Alio C. Control of heterotrophic bacteria and protozoans by Daphnia pulex in the epilimnion of Lake Cisó. Arch Hydrobiol. 1994; 131: 55-78.
Kvam OV, Klieven OT. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiologia. 1995; 307: 177-184.
Cauchie HM, Hoffmann L, Thomé JP. Metazooplankton dynamics and secondary production of Daphnia magna (Crustacea) in an aerated waste stabilization pond. J. Plankton Res. 2000; 22: 2263-2287.
Daborn GR, Hayward JA, Quinney TE. Studies on Daphnia pulex Leydig in sewage oxidation ponds. Can. J. Zool. 1978; 56: 1392-1401.
Pau C, Serra T, Colomer J, Casamitjana X, Sala L, Kampf R. Filtering capacity of Daphnia magna on sludge particles in treated wastewater. Water Res. 2013; 47: 181-186. doi: 10.1016/j.watres.2012.09. 047 PMID: 23095291
Haney JF. Regulation of cladoceran filtering rates in nature by body size, food concentration, and diel feeding patterns. Limnol. Oceanogr. 1985; 30: 397-411.