[en] Natural and synthetic amphiphilic molecules including lipopeptides, lipopolysaccharides
and glycolipids are able to induce defense mechanisms in plants. In the present work, the
perception of two synthetic C14 rhamnolipids, namely Alk-RL and Ac-RL, differing only
at the level of the lipid tail terminal group, have been investigated using biological and
biophysical approaches. We showed that Alk-RL induces a stronger early signaling
response in tobacco cell suspensions than does Ac-RL. The interactions of both synthetic
RLs with simplified biomimetic membranes were further analyzed using experimental and
in silico approaches. Our results indicate that the interactions of Alk-RL and Ac-RL with
lipids were different in terms of insertion and molecular responses and were dependent on
the lipid composition of model membranes. A more favorable insertion of Alk-RL than
Ac-RL into lipid membranes is observed. Alk-RL forms more stable molecular assemblies
than Ac-RL with phospholipids and sterols. At the molecular level, the presence of sterols
tends to increase the RLs’ interaction with lipid bilayers with a fluidizing effect on the
alkyl chains. Taken together, our findings suggest that the perception of these synthetic
RLs at the membrane level could be related to a lipid-driven process depending on the
organization of the membrane and the orientation of the RLs within the membrane and is
correlated with the induction of early signaling responses in tobacco cells.
Nott, K.; Richard, G.; Laurent, P.; Jérôme, C.; Blecker, C.; Wathelet, J.-P.; Paquot, M.; Deleu, M. Enzymatic Synthesis and Surface Properties of Novel Rhamnolipids Process Biochem. 2013, 48 (1) 133-143 10.1016/j.procbio.2012.11.019
Sanchez, M.; Teruel, J. A.; Espuny, M. J.; Marques, A.; Aranda, F. J.; Manresa, A.; Ortiz, A. Modulation of the Physical Properties of Dielaidoylphosphatidylethanolamine Membranes by a Dirhamnolipid Biosurfactant Produced by Pseudomonas Aeruginosa Chem. Phys. Lipids 2006, 142 (1-2) 118-127 10.1016/j.chemphyslip.2006.04.001
Vatsa, P.; Sanchez, L.; Clement, C.; Baillieul, F.; Dorey, S. Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes Int. J. Mol. Sci. 2010, 11 (12) 5095-5108 10.3390/ijms11125095
Lang, S.; Wullbrandt, D. Rhamnose Lipids-Biosynthesis, Microbial Production and Application Potential Appl. Microbiol. Biotechnol. 1999, 51 (1) 22-32 10.1007/s002530051358
Silipo, A.; Erbs, G.; Shinya, T.; Maxwell Dow, J. M.; Parrilli, M.; Lanzetta, R.; Shibuya, N.; Newman, M. A.; Molinaro, A. Glycoconjugates as Elicitors or Suppressors of Plant Innate Immunity Glycobiology 2010, 20, 406-419 10.1093/glycob/cwp201
Ongena, M.; Jacques, P. Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol Trends Microbiol. 2008, 16, 115-125 10.1016/j.tim.2007.12.009
Erbs, G.; Molinaro, A.; Dow, J. M.; Newman, M.-A. Lipopolysaccharides and Plant Innate Immunity Subcell. Biochem. 2010, 53, 387-403 10.1007/978-90-481-9078-2-17
Cambiagno, D. A.; Lonez, C.; Ruysschaert, J.-M.; Alvarez, M. E. The Synthetic Cationic Lipid diC14 Activates a Sector of the Arabidopsis Defence Network Requiring Endogenous Signalling Components Mol. Plant Pathol. 2015, 16 (9) 963-972 10.1111/mpp.12252
Ranf, S.; Gisch, N.; Schäffer, M.; Illig, T.; Westphal, L.; Knirel, Y. A.; Sánchez-Carballo, P. M.; Zähringer, U.; Hückelhoven, R.; Lee, J. et al. A Lectin S-Domain Receptor Kinase Mediates Lipopolysaccharide Sensing in Arabidopsis Thaliana Nat. Immunol. 2015, 16 (4) 426-433 10.1038/ni.3124
Henry, G.; Deleu, M.; Jourdan, E.; Thonart, P.; Ongena, M. The Bacterial Lipopeptide Surfactin Targets the Lipid Fraction of the Plant Plasma Membrane to Trigger Immune-Related Defence Responses Cell. Microbiol. 2011, 13 (11) 1824-1837 10.1111/j.1462-5822.2011.01664.x
Mulligan, C. N.; Wang, S. Remediation of a Heavy Metal-Contaminated Soil by a Rhamnolipid Foam Eng. Geol. 2006, 85 (1) 75-81 10.1016/j.enggeo.2005.09.029
Pornsunthorntawee, O.; Wongpanit, P.; Rujiravanit, R. Rhamnolipid Biosurfactants: Production and Their Potential in Environmental Biotechnology Adv. Exp. Med. Biol. 2010, 672, 211-221 10.1007/978-1-4419-5979-9-16
Sekhon Randhawa, K. K.; Rahman, P. K. S. M. Rhamnolipid Biosurfactants-Past, Present, and Future Scenario of Global Market Front. Microbiol. 2014, 5, 454 10.3389/fmicb.2014.00454
Maier, R. M.; Soberon-Chavez, G.; Soberón-Chávez, G. Pseudomonas Aeruginosa Rhamnolipids: Biosynthesis and Potential Applications Appl. Microbiol. Biotechnol. 2000, 54 (5) 625-633 10.1007/s002530000443
Abdel-Mawgoud, A. M.; Lépine, F.; Déziel, E. Appl. Microbiol. Biotechnol. 2010, 86, 1323-1336 10.1007/s00253-010-2498-2
Banat, I. M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M. G.; Fracchia, L.; Smyth, T. J.; Marchant, R. Microbial Biosurfactants Production, Applications and Future Potential Appl. Microbiol. Biotechnol. 2010, 87 (2) 427-444 10.1007/s00253-010-2589-0
Sanchez, L.; Courteaux, B.; Hubert, J.; Kauffmann, S.; Renault, J.-H.; Clément, C.; Baillieul, F.; Dorey, S. Rhamnolipids Elicit Defense Responses and Induce Disease Resistance against Biotrophic, Hemibiotrophic, and Necrotrophic Pathogens That Require Different Signaling Pathways in Arabidopsis and Highlight a Central Role for Salicylic Acid Plant Physiol. 2012, 160 (3) 1630-1641 10.1104/pp.112.201913
Benschop, J. J.; Mohammed, S.; O'Flaherty, M.; Heck, A. J. R.; Slijper, M.; Menke, F. L. H. Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis Mol. Cell. Proteomics 2007, 6 (7) 1198-1214 10.1074/mcp.M600429-MCP200
Finka, A.; Cuendet, A. F. H.; Maathuis, F. J. M.; Saidi, Y.; Goloubinoff, P. Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Thermal Sensing and Acquired Thermotolerance Plant Cell 2012, 24 (8) 3333-3348 10.1105/tpc.112.095844
Miller, G.; Schlauch, K.; Tam, R.; Cortes, D.; Torres, M. A.; Shulaev, V.; Dangl, J. L.; Mittler, R. The Plant NADPH Oxidase RBOHD Mediates Rapid Systemic Signaling in Response to Diverse Stimuli Sci. Signaling 2009, 2 (84) ra45 10.1126/scisignal.2000448
Torres, M. A. ROS in Biotic Interactions Physiol. Plant. 2010, 138, 414-429 10.1111/j.1399-3054.2009.01326.x
del Rio, L. A. ROS and RNS in Plant Physiology: An Overview J. Exp. Bot. 2015, 66 (10) 2827-2837 10.1093/jxb/erv099
Murphy, A. S.; Peer, W.; Schulz, B. The Plant Plasma Membrane; Springer, 2010; Vol. 2010.
Deleu, M.; Crowet, J.-M.; Nasir, M. N.; Lins, L. Complementary Biophysical Tools to Investigate Lipid Specificity in the Interaction between Bioactive Molecules and the Plasma Membrane: A Review Biochim. Biophys. Acta, Biomembr. 2014, 1838 (12) 3171-3190 10.1016/j.bbamem.2014.08.023
Razafindralambo, H.; Paquot, M.; Hbid, C.; Jacques, P.; Destain, J.; Thonart, P. Purification of Antifungal Lipopeptides by Reversed-Phase High-Performance Liquid Chromatography J. Chromatogr. A 1993, 639 (1) 81-85 10.1016/0021-9673(93)83091-6
Calvez, P.; Bussieres, S.; Eric, D.; Salesse, C.; Bussières, S.; Demers, é.; Salesse, C.; Bussieres, S.; Eric, D.; Salesse, C. Parameters Modulating the Maximum Insertion Pressure of Proteins and Peptides in Lipid Monolayers Biochimie 2009, 91 (6) 718-733 10.1016/j.biochi.2009.03.018
Calvez, P.; Demers, E.; Boisselier, E.; Salesse, C. Analysis of the Contribution of Saturated and Polyunsaturated Phospholipid Monolayers to the Binding of Proteins Langmuir 2011, 27 (4) 1373-1379 10.1021/la104097n
Lins, L.; Brasseur, R.; Malaisse, W. J. Conformational Analysis of Non-Sulfonylurea Hypoglycemic Agents of the Meglitinide Family Biochem. Pharmacol. 1995, 50 (11) 1879-1884 10.1016/S0006-2952(99)80003-3
Ducarme, P.; Rahman, M.; Brasseur, R. IMPALA: A Simple Restraint Field to Simulate the Biological Membrane in Molecular Structure Studies Proteins: Struct., Funct., Genet. 1998, 30 (4) 357-371 10.1002/(SICI)1097-0134(19980301)30:4<357::AID-PROT3>3.0.CO;2-G
Lins, L.; Brasseur, R. The Hydrophobic Effect in Protein Folding FASEB J. 1995, 9 (7) 535-540
Hädicke, A.; Blume, A. Binding of the cationic peptide (KL)4K to lipid monolayers at the air-water interface: effect of lipid headgroup charge, acyl chain length, and acyl chain saturation J. Phys. Chem. B 2016, 120, 3880-3887 10.1021/acs.jpcb.6b01558
Marsh, D. Lateral Pressure in Membranes Biochim. Biophys. Acta, Rev. Biomembr. 1996, 1286 (3) 183-223 10.1016/S0304-4157(96)00009-3
Ter-Minassian-Saraga, L.; Okamura, E.; Umemura, J.; Takenaka, T. Fourier Transform Infrared-Attenuated Total Reflection Spectroscopy of Hydration of Dimyristoylphosphatidylcholine Multibilayers Biochim. Biophys. Acta, Biomembr. 1988, 946 (2) 417-423 10.1016/0005-2736(88)90417-8
Arrondo, J. L. R.; Goñi, F. M. Infrared Studies of Protein-Induced Perturbation of Lipids in Lipoproteins and Membranes Chem. Phys. Lipids 1998, 96 (1-2) 53-68 10.1016/S0009-3084(98)00080-2
Kodati, V. R. R.; Lafleur, M. Comparison between Orientational and Conformational Orders in Fluid Lipid Bilayers Biophys. J. 1993, 64 (1) 163-170 10.1016/S0006-3495(93)81351-1
Pohle, W.; Gauger, D. R.; Dornberger, U.; Birch-Hirschfeld, E.; Selle, C.; Rupprecht, A.; Bohl, M. Hydration of Biological Molecules: Lipids versus Nucleic Acids Biopolymers 2002, 67 (6) 499-503 10.1002/bip.10164
Tamm, L. K.; Tatulian, S. A. Infrared Spectroscopy of Proteins and Peptides in Lipid Bilayers Q. Rev. Biophys. 1997, 30 (4) 365-429 10.1017/S0033583597003375
Pohle, W.; Selle, C.; Fritzsche, H.; Binder, H. Fourier Transform Infrared Spectroscopy as a Probe for the Study of the Hydration of Lipid Self-Assemblies. I. Methodology and General Phenomena Biospectroscopy 1998, 4, 267-280 10.1002/(SICI)1520-6343(1998)4:4<267::AID-BSPY5>3.0.CO;2-#
Varnier, A.-L.; Sanchez, L.; Vatsa, P.; Boudesocque, L.; Garcia-Brugger, A.; Rabenoelina, F.; Sorokin, A.; Jh, R.; Kauffmann, S.; Pugin, A. et al. Bacterial Rhamnolipids Are Novel MAMPs Conferring Resistance to Botrytis Cinerea in Grapevine Plant, Cell Environ. 2009, 32 (2) 178-193 10.1111/j.1365-3040.2008.01911.x
Raaijmakers, J. M.; De Bruijn, I.; Nybroe, O.; Ongena, M. Natural Functions of Lipopeptides from Bacillus and Pseudomonas: More than Surfactants and Antibiotics FEMS Microbiol. Rev. 2010, 34 (6) 1037-1062 10.1111/j.1574-6976.2010.00221.x
Hellgren, L. I.; Sandelius, A. S. The Impact of Different Phytosterols on the Molecular Dynamics in the Hydrophobic/hydrophilic Interface Phosphatidylcholine-liposomes Physiol. Plant. 2001, 113, 23-32 10.1034/j.1399-3054.2001.1130104.x
Katzer, M. Biophysical Characterization of the Interaction between a Naturally Occuring Solute, the Plant Hormone Ct-Abscisic Acid, with Membranes. Thesis, Indiana University, 2005.
Ilangumaran, S.; Hoessli, D. C. Effects of Cholesterol Depletion by Cyclodextrin on the Sphingolipid Microdomains of the Plasma Membrane Biochem. J. 1998, 335 (2) 433-440 10.1042/bj3350433
Yeh, M. S.; Wei, Y. H.; Chang, J. S. Enhanced Production of surfactin from Bacillus subtilis by addition of solid carriers Biotechnol. Prog. 2005, 21, 1329-1334 10.1021/bp050040c
Nimchuk, Z.; Eulgem, T.; Holt, B. F., III.; Dangl, J. L. Recognition and Response in the Plant Immune System Annu. Rev. Genet. 2003, 37, 579-609 10.1146/annurev.genet.37.110801.142628
Ron, M.; Avni, A. The Receptor for the Fungal Elicitor Ethylene-Inducing Xylanase Is a Member of a Resistance-like Gene Family in Tomato Plant Cell 2004, 16 (6) 1604-1615 10.1105/tpc.022475
Felix, G.; Boller, T. Molecular Sensing of Bacteria in Plants: The Highly Conserved RNA-Binding Motif RNP-1 of Bacterial Cold Shock Proteins Is Recognized as an Elicitor Signal in Tobacco J. Biol. Chem. 2003, 278 (8) 6201-6208 10.1074/jbc.M209880200